Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Cryovolcanic Features

  • Henrik Hargitai
  • Ákos Kereszturi
  • Mathieu Choukroun
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_92

Definition

A structure produced by volcanic processes in which the terrestrial role of silicates is played by materials that are volatiles on Earth: water ice, ammonia, methane, or other low-melting-point materials, hence, named cryovolcanism, occurring on the icy moons of the outer solar system whose crust is primarily composed of water ice (Croft 1990).

Synonyms

Related Terms

Cryolava, cryogenic lava, cryovolcanic lava

Subtypes

Possible cryovolcanic features include:
  1. (1)
    Cryovolcanic edifice (constructional cryovolcano) may include various cryovolcanic units like shield/cone/dome, caldera, flow, and channel.
    1. (1.1)

      Cryovolcanic shield.

       
    2. (1.2)

      Cryolava dome (dome-like volcanic edifice).

       
     
  2. (2)

    Cryovolcanic caldera.

     
  3. (3)
    Cryovolcanic lava flow (cryolava flow).
    1. (3.1)

      Cryolava flow field, cryolava plain.

       
    2. (3.2)

      Cryolava channel (sinuous), cryovolcanically emplaced. These are different from fluvial or mass-wasting channels or...

This is a preview of subscription content, log in to check access.

References

  1. Cassen P, Reynolds RT, Peale SJ (1979) Is there liquid water on Europa? Geophys Res Lett 6:731–734CrossRefGoogle Scholar
  2. Choukroun M, Grasset O, Tobie G, Sotin C (2010) Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205:581–593CrossRefGoogle Scholar
  3. Crawford GD, Stevenson DJ (1988) Gas-driven water volcanism in the resurfacing of Europa. Icarus 73:66–79CrossRefGoogle Scholar
  4. Croft SK (1987) Miranda: cryovolcanism and tectonism on a micro-planet. Geol Soc Am Abstr Program 19:603Google Scholar
  5. Croft SK (1990) Physical cryovolcanism on triton. Lunar Planet Sci Conf XXI:246–247, HoustonGoogle Scholar
  6. Croft SK, Lunine JI, Kargel J (1988) Equation of state of ammonia-water liquid – derivation and planetological applications. Icarus 73:279–293CrossRefGoogle Scholar
  7. Croft SK, Kargel JS, Kirk RL, Moore JM, Schenk PM, Strom RG (1995) The geology of Triton. In: Cruikshank DP (ed) Neptune and Triton. University of Arizona Press, Tucson, pp 879–947Google Scholar
  8. Davies AG, Matson DL, Castillo JC, Johnson TV, Sotin C (2008) Cryolava emplacement on Titan and resulting morphology: modelling strategy. Geophys Res Abstr 10, EGU2008-A-04430Google Scholar
  9. Davies AG, Matson DL, Sotin C, Castillo-Rodriguez JC, Johnson TV (2009) Assessing cryovolcanic resurfacing of Titan. 40th Lunar Planet Sci Conf, abstract #1906, HoustonGoogle Scholar
  10. Elachi C, Wall S, Allison M, Anderson Y, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Janssen M, Johnson W, Kelleher K, Kirk R, Lopes R, Lorenz R, Lunine J, Muhleman D, Ostro S, Paganelli F, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Soderblom L, Stiles B, Stofan E, Vetrella S, West R, Wood C, Wye L, Zebker H (2005) First views of the surface of Titan from the Cassini RADAR. Science 308:970–974CrossRefGoogle Scholar
  11. Fagents SA (2003) Considerations for effusive cryovolcanism on Europa: the post-Galileo perspective. J Geophys Res 108, 13-1, CiteID 5139. doi:10.1029/2003JE002128Google Scholar
  12. Fagents SA, Greeley R, Sullivan RJ, Pappalardo RT, Prockter LM (2000) Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa. Icarus 144:54–88CrossRefGoogle Scholar
  13. Figueredo PH, Greeley R (2004) Resurfacing history of Europa from pole-to-pole geologic mapping. Icarus 167(2):287–312CrossRefGoogle Scholar
  14. Geissler PE (2000) Cryovolcanism in the outer solar system. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 785–800Google Scholar
  15. Greenberg R, Geissler P, Hoppa G, Tufts BR, Durda DD, Pappalardo R, Head JW, Greeley R, Sullivan R, Carr MH (1998) Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78CrossRefGoogle Scholar
  16. Hand KP, Chyba CF, Priscu JC, Carlson RW, Nealson KH (2009) Astrobiology and the potential for life on Europa. In: Pappalardo R, McKinnon W, Khurana K (eds) Europa. University of Arizona Press, TucsonGoogle Scholar
  17. Head JW, Sherman ND, Pappalardo RT, Thomas C, Greeley R, Galileo SSI Team (1998) Cryovolcanism on Europa: evidence for the emplacement of flows and related deposits in the E4 region (5N, 305W) and interpreted eruption conditions. Lunar Planet Sci Conf XXIX, abstract #1491, HoustonGoogle Scholar
  18. Jankowski DG, Squyres SW (1988) Solid-state ice volcanism on the satellites of Uranus. Science 241:1322–1325CrossRefGoogle Scholar
  19. Kargel JS (1990) Cryomagmatism in outer solar system. Dissertation, The University of ArizonaGoogle Scholar
  20. Kargel JS, Strom RG (1990) Cryovolcanism on triton. Lunar Planet Sci Conf XXI:599–600, HoustonGoogle Scholar
  21. Le Corre L et al (2009) Analysis of a cryolava flow-like feature on Titan. Planet Space Sci 57:870–879Google Scholar
  22. Lopes RM, Elachi C, Stofan E, Paganell F, Wood C, Kirk R, Lorenz R, Fortes AD, Lunine J, Soderblom LA, Wall SD, The Cassini RADAR Team (2005) Geophys Res Abstr 7:03834, European Geosciences Union meeting abstract EGU05-J-03834Google Scholar
  23. Lopes RMC, Mitchell KL, Stofan ER, Lunine JI, Lorenz R, Paganelli F, Kirk RL, Wood CA, Wall SD, Robshaw LE, Fortes AD, Neish CD, Radebaugh J, Reffet E, Ostro SJ, Elachi C, Allison MD, Anderson Y, Boehmer R, Boubin G, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Janssen MA, Johnson WTK, Kelleher K, Muhleman DO, Ori G, Orosei R, Picardi G, Posa F, Roth LE, Seu R, Shaffer S, Soderblom LA, Stiles B, Vetrella S, West RD, Wye L, Zebker HA (2007) Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan Radar Mapper. Icarus 186:395–412CrossRefGoogle Scholar
  24. Lopes RMC, Kirk RL, Mitchell KL, LeGall A, Barnes JW, Hayes A, Kargel J, Wye L, Radebaugh J, Stofan ER, Janssen MA, Neish CD, Wall SD, Wood CA, Lunine JI, Malaska M (2013) Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J Geophys Res Planets 118. doi:10.1029/2012JE004239Google Scholar
  25. Lorenz RD (1996) Pillow lava on Titan: expectations and constraints on cryovolcanic processes. Planet Space Sci 44:1021–1028CrossRefGoogle Scholar
  26. Manga M, Wang CY (2007) Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys Res Lett 34:L07202CrossRefGoogle Scholar
  27. Mitri G, Showman AP, Lunine JI, Lopes RMC (2008) Resurfacing of Titan by ammonia-water cryomagma. Icarus 196:216–224CrossRefGoogle Scholar
  28. Moore JM, Pappalardo RT (2011) Titan: an exogenic world? Icarus 212:790–806CrossRefGoogle Scholar
  29. Mousis O, Schmitt B (2008) Sequestration of ethane in the cryovolcanic subsurface of Titan. Astrophys J 677:L67. doi:10.1086/587141CrossRefGoogle Scholar
  30. National Research Council, Committee on Planetary Protection Standards for Icy Bodies in the Outer Solar System, Space Studies Board, Division on Engineering and Physical Sciences (2012) Assessment of planetary protection requirements for spacecraft missions to icy solar system bodies. National Academies Press, Washington, DCGoogle Scholar
  31. Nelson RM et al (2009) Photometric changes on Saturn’s moon Titan: Evidence for cryovolcanism. Geophys Res Lett 36:L04202. doi:10.1029/2008GL036206Google Scholar
  32. Pappalardo RT, Barr AC (2004) The origin of domes on Europa: the role of thermally induced compositional diapirism. Geophys Res Lett 31:1701. doi:10.1029/2003GL019202CrossRefGoogle Scholar
  33. Pappalardo RT et al (1999) Does Europa have a subsurface ocean?: evaluation of the geological evidence. J Geophys Res E Planets 104:24015–24055CrossRefGoogle Scholar
  34. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, West R, Neukum G, Denk T, Wagner R, Roatsch T, Kieffer S, Turtle E, McEwen A, Johnson TV, Rathbun J, Veverka J, Wilson D, Perry J, Spitale J, Brahic A, Burns JA, Del Genio AD, Dones L, Murray CD, Squyres S (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401CrossRefGoogle Scholar
  35. Postberg F, Kempf S, Hillier JK, Srama R, Green SF, McBride N, Grun E (2008) The E-ring in the vicinity of Enceladus II. Probing the moon’s interior – the composition of E-ring particles. Icarus 193:438–454CrossRefGoogle Scholar
  36. Prockter LM, Head JW, Pappalardo RT, Senske DA, Neukum G, Wagner R, Wolf U, Oberst J, Giese B, Moore JM, Chapman CR, Helfenstein P, Greeley R, Breneman HH, Belton MJS (1998) Dark terrain on Ganymede: geological mapping and interpretation of Galileo Region at high resolution. Icarus 135:317–344CrossRefGoogle Scholar
  37. Roth L, Saur J, Retherford KD, Strobel DF, Feldman PD, McGrath MA, Nimmo F (2013) Transient water vapor at Europa’s south pole. Science. doi:10.1126/science.1247051Google Scholar
  38. Schenk PM, Moore JM (1998) Geologic landforms and processes on icy satellites. In: Schmitt B et al (eds) Solar system ices. Kluwer, Boston, pp 551–578CrossRefGoogle Scholar
  39. Schenk PM, Zahnle K (2007) On the negligible surface age of Triton. Icarus 192:135–149CrossRefGoogle Scholar
  40. Showman AP, Han L (2004) Numerical simulations of convection in Europa’s ice shell: implications for surface features. J Geophys Res 109(E1):E01010. doi:10.1029/2003JE002103Google Scholar
  41. Showman AP, Mosqueira I, Head JW (2004) On the resurfacing of Ganymede by liquid-water volcanism. Icarus 172:625–640CrossRefGoogle Scholar
  42. Smith BA, Soderblom LA et al (1989) Voyager 2 at Neptune – imaging science results. Science 246:1422–1449CrossRefGoogle Scholar
  43. Soderblom LA, Becker TL, Kieffer SW, Brown RH, Hansen CJ, Johnson TV (1990) Triton’s geyser-like plumes – discovery and basic characterization. Science 250(4979):410–415CrossRefGoogle Scholar
  44. Sotin C et al (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789CrossRefGoogle Scholar
  45. Space Studies Board (2012) Assessment of planetary protection requirements for spacecraft missions to icy solar system bodies. National Academies Press, Washington, DCGoogle Scholar
  46. Spencer JR, Barr AC, Esposito LW, Helfenstein P, Ingersoll AP, Jaumann R, McKay CP, Nimmo F, Waite JH (2009) Enceladus: an active cryovolcanic satellite. In: Dougherty MK, Esposito LW, Krimigis SM (eds) Saturn from Cassini-Huygens. Springer Science + Business Media B.V, DordrechtGoogle Scholar
  47. Tobie G, Choblet G, Sotin C (2003) Tidally heated convection: constraints on Europa’s ice shell thickness. J Geophys Res 108:5124. doi:10.1029/2003JE002099CrossRefGoogle Scholar
  48. Tobie G, Giese B, Hurford TA, Lopes RM, Nimmo F, Postberg F, Retherford KD, Schmidt J, Spencer JR, Tokano T, Turtle EP (2010) Surface, subsurface and atmosphere exchanges on the satellites of the outer solar system. Space Sci Rev 153:375–410. doi:10.1007/s11214-010-9641-3CrossRefGoogle Scholar
  49. Wall SD, Lopes RM, Stofan ER, Wood CA, Radebaugh JL, Hörst SM, Stiles BW, Nelson RM, Kamp LW, Janssen MA, Lorenz RD, Lunine JI, Farr TG, Mitri G, Paillou P, Paganelli F, Mitchell KL (2009) Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: evidence for geologically recent cryovolcanic activity. Geophys Res Lett 36, CiteID L04203Google Scholar
  50. Wilson L, Head JW, Pappalardo RT (1997) Eruption of lava flows in Europa: theory and application to Thrace Macula. J Geophys Res 102:9263–9272CrossRefGoogle Scholar
  51. Zahnle K, Schenk P, Levison H, Dones L (2003) Cratering rates in the outer solar system. Icarus 163:263–289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Henrik Hargitai
    • 1
  • Ákos Kereszturi
    • 2
  • Mathieu Choukroun
    • 3
  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA