Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Crust (Type)

  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_90


Solidified upper layer of a planetary body that is chemically distinct from the mantle, formed by various degrees of differentiation. On Earth, the crust comprises all material above the Mohorovičić discontinuity (Whittow 2000). The definition of the terrestrial lithosphere (mobile lithospheric plates) includes the crust and the uppermost mantle, both of which are layers of strength relative to the underlying weaker asthenospheric mantle for deformation at geologic rates (Dennis and Atwater 1974, p. 1031; Bürgman and Dresen 2008). On other planetary bodies, the crust is poorly defined because of the lack of seismic data.


  1. (1)

    Primary/primordial crust results from planetary differentiation. It forms during and following planetary accretion (Chambers 2004) on short (100 Myr) timescales (Taylor 1989; Taylor and McLennan 2009, p. 22 and references therein). When the surface had stabilized subsequent to primary accretion, it became cool and thus strong and rigid enough...

This is a preview of subscription content, log in to check access.


  1. Abe Y (1993) Physical state of the very early Earth. Lithos 30:223–235CrossRefGoogle Scholar
  2. Albarede F, Blichert-Toft J (2007) The split fate of the early Earth, Mars, Venus and Moon. C R Geosci 339:917–927CrossRefGoogle Scholar
  3. Bédard JH, Brouillette P, Madore L, Berclaz A (2003) Archaean cratonization and deformation in the northern superior province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precambrian Res 127:61–87CrossRefGoogle Scholar
  4. Benz W, Slattery WL, Cameron AGW (1988) Collisional stripping of mercury’s mantle. Icarus 74(3):516–528CrossRefGoogle Scholar
  5. Bradley JL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216CrossRefGoogle Scholar
  6. Breuer D, Moore WB (2007) Dynamics and thermal history of the terrestrial planets, the moon, and Io. In: Spohn T (ed) Planets and moons. Treatise on geophysics, vol 10. Elsevier, Breuer pp 299–348Google Scholar
  7. Bürgman R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567CrossRefGoogle Scholar
  8. Campbell IH, Taylor SR (1983) No water, no granites – no oceans, no continents. Geophys Res Lett 10:1061–1064CrossRefGoogle Scholar
  9. Caro G, Bourdon B, Birck J, Moorbath S (2003) Sm–Nd evidence from Isua metamorphosed sediments for early differentiation of the earth’s mantle. Nature 423:428–432CrossRefGoogle Scholar
  10. Castro A, Voght K, Gerya T (2012) Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor’s andesite model. Gondwana Res. http://dx.doi.org/10.1016/j.gr.2012.07.004
  11. Chambers JE (2004) Planetary accretion in the inner Solar System. Earth Planet Sci Lett 223:241–252CrossRefGoogle Scholar
  12. Dennis JG, Atwater TM (1974) Terminology of geodynamics. American Association of Petroleum Geologists. Bulletin 58:1030–1036Google Scholar
  13. Elkins-Tanton LT (2011) Formation of early water oceans on rocky planets. Astrophys Space Sci 332(2):359–364CrossRefGoogle Scholar
  14. Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Ann Rev Earth Planet Sci 40:113–139CrossRefGoogle Scholar
  15. Galer SJG, Mezger K (1998) Metamorphism denudation and sea level in the archean and cooling of the earth. Precambrian Res 92:387–412CrossRefGoogle Scholar
  16. Goldschmidt VM (1954) Geochemistry. Oxford. Clarendon Press, Oxford, p 730Google Scholar
  17. Grimm RE, Hess PC (1997) The crust of venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, p 1330Google Scholar
  18. Harrison TM (2009) The Hadean crust: evidence from ancient zircons. Ann Rev Earth Planet Sci 37:479–505CrossRefGoogle Scholar
  19. Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–514CrossRefGoogle Scholar
  20. Head JW, Ivanov MA, Basilevsky AT (2009) Geological evidence for petrogenetic diversity on venus: implications for future exploration strategies. Workshop on venus geochemistry: progress, prospects, and new missions. LPI Contrib 1470:25–26Google Scholar
  21. Hopkins MD, Harrison TM, Manning CE (2010) Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters 298:367–376CrossRefGoogle Scholar
  22. Illés E (2005) Comparative planetology. In: Dudich E (ed) Geonomy. The synthesizing geoscience for the 21st century. Hungarian Academy of Sciences, Uniconstant, PüspökladányGoogle Scholar
  23. Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216CrossRefGoogle Scholar
  24. Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res 106(B4):6423–6446CrossRefGoogle Scholar
  25. Kargel JS (1994) Cryovolcanism on the icy satellites. Earth Moon Planets 67(1–3):101–113CrossRefGoogle Scholar
  26. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56CrossRefGoogle Scholar
  27. Lunine JI (2006) Origin of water ice in the solar system. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 309–331Google Scholar
  28. Marcus RA, Stewart ST, Sasselov D, Hernquist L (2009) Collisional stripping and disruption of super-Earths. Astrophysical J 700:L118. doi:10.1088/0004-637X/700/2/L118CrossRefGoogle Scholar
  29. Massironi M, Cremonese G, Marchi S, Martellato E, Mottola S, Wagner RJ (2009) Mercury’s Geochronology revised by applying model production function to mariner 10 data: geological implications. Geophys Res Lett 36:L21204. doi:10.1029/2009GL040353CrossRefGoogle Scholar
  30. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4,300 Myr ago. Nature 409:178–181CrossRefGoogle Scholar
  31. Nagel TJ, Hoffmann JE, Münker C (2012) Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology 40:375. doi:10.1130/G32729.1CrossRefGoogle Scholar
  32. Pappalardo RT, Head JW (1999) Europa: Role of The Ductile Layer. LPSC XXX #1967Google Scholar
  33. Poulet F (2009) Petrogenesis of the martian crust. EPSC Abstracts, 4, EPSC2009-166, European Planetary Science CongressGoogle Scholar
  34. Roth ASG, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited 142-Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57CrossRefGoogle Scholar
  35. Rothery D, Marinangeli L, Anand M, Carpenter J, Christensen U et al (2010) Mercury’s surface and composition to be studied by BepiColombo. Planet Space Sci 58(1–2):21–39CrossRefGoogle Scholar
  36. Sleep NH (2005) Evolution of the continental lithosphere. Annu Rev Earth Planet Sci 33:369–393. doi:10.1146/annurev.earth.33.092203.122643CrossRefGoogle Scholar
  37. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39(12):1103–1106. doi:10.1130/G32348.1 vCrossRefGoogle Scholar
  38. Taylor SR (1982) Lunar and terrestrial crusts: a contrast in origin and evolution. Phys Earth Planet Inter 29:233–241CrossRefGoogle Scholar
  39. Taylor SR (1989) Growth of planetary crusts. Tectonophysics 161:147–156CrossRefGoogle Scholar
  40. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Carlton, p 312Google Scholar
  41. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, CambridgeGoogle Scholar
  42. Tonks BT, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333CrossRefGoogle Scholar
  43. Warren PH (1985) The magma ocean concept and lunar evolution. Ann Rev Earth Planet Sci 13:201–240CrossRefGoogle Scholar
  44. Whittow JB (2000) The penguin dictionary of physical geography, 2nd edn. Penguin Books, AucklandGoogle Scholar
  45. Wieczorek MA, Zuber MT (2004) Thickness of the martian crust: improved constraints from geoid-to-topography ratios. J Geophys Res 109:E01009. doi:10.1029/2003JE002153Google Scholar
  46. Wilhelms DE (1993) To a rocky moon – a geologists history of lunar exploration. The University of Arizona Press, Tucson, p 477Google Scholar
  47. Wood JA (1972) Fragments of terra rock in the Apollo 12 soil samples and a structural model of the moon. Icarus 16:494Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA