Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Crater Lake

  • Mohamed Ramy El Maarry
  • Gino Erkeling
  • Ákos Kereszturi
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_76


A circular depression of impact or volcanic origin, filled or covered by water or other non-magmatic liquid.



Crater lakes may be closed drainage (endorheic) crater basins or open basins. They may be filled with liquids presently or in the past (paleolakes) as inferred from crater morphology or sedimentary deposits. The shape of the lake may be (sub)circular, annular, or more complex, depending on being the crater simple or complex and on the stage of erosion.

Lake Classification Based on Water Source

  1. (1)

    Meteoric source (rain, snow): suggested for Titan (Aharonson et al. 2009) and Mars, where it may have formed transient lakes (Kite et al. 2011).

  2. (2)

    Source at the surface (streams, springs): in the case of Mars, lakes formed by breaching of the crater wall by inlet channels –  outflow channels or  valley networks– with accompanying sedimentation in the crater basin. If the inflow volume exceeds the crater’s capacity, water...

This is a preview of subscription content, log in to check access.


  1. Aharonson O, Hayes AG, Lunine JI, Lorenz RD, Allison MD, Elachi C (2009) An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat Geosci 2:851–854CrossRefGoogle Scholar
  2. Cabrol NA, Grin EA (1999) Distribution, classification, and ages of Martian impact crater lakes. Icarus 142:160–172CrossRefGoogle Scholar
  3. Cabrol NA, Grin EA (2001) The evolution of lacustrine environments on mars: is Mars only hydrologically dormant? Icarus 149:291–328CrossRefGoogle Scholar
  4. Cabrol NA, Grin EA, Bebout L, Chong G, Demergasso C, Fleming E, Gaete V, Gibson J, Häder D-P, Mack J, Minkley E, Pinto E, Rose K, Ukstins Peate I, Tambley C, Williamson C, Wynne JJ (2009) High Lakes Project – impact of climate variability and high UV flux on lake habitat: implications for early Mars and present-day Earth. Lunar Planet Sci Conf, abstract #1141, HoustonGoogle Scholar
  5. Carroll AR, Bohacs KM (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27:99–102CrossRefGoogle Scholar
  6. Cockell CS, Lee P (2002) The biology of impact craters – a review. Biol Rev 77:279–310CrossRefGoogle Scholar
  7. El Maarry MR, Markiewicz W, Mellon M, Goetz W, Dohm JM, Pack A (2010) Crater floor polygons: desiccation patterns of ancient lakes on mars? J Geophys Res 115:E10006. doi:10.1029/2010JE003609CrossRefGoogle Scholar
  8. Erkeling G, Reiss D, Hiesinger H, Hielscher FJ, Ivanov MA (2011) The stratigraphy of the Amenthes region, Mars: time limits for the formation of fluvial, volcanic and tectonic landforms. Icarus 215:128–152CrossRefGoogle Scholar
  9. Fassett CI, Head JW (2008) Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56CrossRefGoogle Scholar
  10. Guyard H et al (2011) New insights into Late Pleistocene glacial and postglacial history of northernmost Ungava (Canada) from Pingualuit Crater Lake sediments. Quat Sci Rev. doi:10.1016/j.quascirev.2011.10.002Google Scholar
  11. Irwin RP, Howard AD, Craddock RA, Moore JM (2005) An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J Geophys Res 110:E12S15CrossRefGoogle Scholar
  12. Kereszturi A (2010) Lakes beyond the Earth: dry lakebeds on Mars, and active methane-ethane lakes on Titan. In: Meyer PL (ed) Ponds: formation, characteristics, and uses. Nova, New York, pp 125–138Google Scholar
  13. Kite ES, Rafkin SCR, Michaels TI, Manga M (2011) Localized precipitation, lake-effect storms, and erosion on Mars. In: The fourth international workshop on the Mars atmosphere: modelling and observation, Paris. pp 457–460Google Scholar
  14. Kristen I, Wilkes H, Vieth A, Zink K-G, Plessen B, Thorpe J, Partridge TC, Oberhänsli H (2010) Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: evidence for deglacial wetness and early Holocene drought from South Africa. J Paleolimnol 44(1):143–160CrossRefGoogle Scholar
  15. Leverington DW, Maxwell TA (2004) An igneous origin for features of a candidate crater-lake system in western Memnonia, Mars. J Geophys Res 109:E06006. doi:10.1029/2004JE002237Google Scholar
  16. Neukum G, Jaumann R, The HRSC Co-Investigator and Experiment Team, HRSC (2004) The high resolution stereo camera of Mars express. In: Wilson A (ed) Mars express: the scientific payload. ESA, Noordwijk, pp 17–35Google Scholar
  17. Newsom HE (2010) Heated lakes on Mars. In: Cabrol NA, Grin EA (eds) Lakes on Mars. Elsevier, Amsterdam, pp 91–110CrossRefGoogle Scholar
  18. Newsom HE, Brittelle GE, Hibbitts CA, Crossey LJ, Kudo AM (1996) Impact crater lakes on Mars. J Geophys Res 101(E6):14951–14955CrossRefGoogle Scholar
  19. Newsom HE, Hagerty JJ, Thorsos IE (2001) Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology 1:71–88CrossRefGoogle Scholar
  20. Olsen PE (1990) Tectonic, climatic, and biotic modulation of lacustrine ecosystems– Examples from Newark Supergroup of Eastern North America. In: Katz B (ed), Lacustrine Basin Exploration: Case Studies and Modern Analogs. AAPG Memoir 50, pp. 209–224Google Scholar
  21. Osinski G (2005) Impact craters as habitats for life on Early earth and Mars. Earth Syst Process 2(8–11 Aug 2005) Paper No. 4–2Google Scholar
  22. Pondrelli M, Baliva A, DiLorenzo S, Marinangeli L, Rossi AP (2005) Complex evolution of paleolacustrine systems on Mars: an example from the Holden crater. J Geophys Res 110:E04016Google Scholar
  23. Pondrelli M, Rossi AP, Marinangeli L, Hauber E, Gwinner K, Baliva A, DiLorenzo S (2008) Evolution and depositional environments of the Eberswalde Fan delta, Mars. Icarus 197:429–451CrossRefGoogle Scholar
  24. Schon SC, Head JW, Fassett CI (2012) An overfilled lacustrine system and progradational delta in Jezero crater. Mars: implications for Noachian climate. Planet Space Sci 67:28–45CrossRefGoogle Scholar
  25. Siddiqi SZ (2008) Limnological profile of high-impact meteor crater lake Lonar, Buldana, Maharashtra, India, an extreme hyperalkaline, saline habitat. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th world lake conference, pp 1597–1613Google Scholar
  26. Voiland A (2012) Ice-free crater lakes on Ungava peninsula. NASA Earth Observatory. http://earthobservatory.nasa.gov/IOTD/view.php?id=79743
  27. Wray J et al (2011) Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J Geophys Res 116(E01001):41. doi:10.1029/2010JE003694Google Scholar
  28. Zahnle K (2001) The Hadean atmosphere. American Geophysical Union, Fall Meeting 2001, abstract #U51A-10Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohamed Ramy El Maarry
    • 1
  • Gino Erkeling
    • 2
  • Ákos Kereszturi
    • 3
  • Henrik Hargitai
    • 4
  1. 1.Physikalisches InstitutBern UniversitätBernSwitzerland
  2. 2.Institut für PlanetologieWestfälische Wilhelms-UniversitätMünsterGermany
  3. 3.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  4. 4.NASA Ames Research Center/NPPMoffett FieldUSA