Skip to main content

Crater Cluster (Atmospheric Breakup)

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Group of separated (sometimes overlapping) impact craters that formed simultaneously, likely by the breakup of an impacting body in the atmosphere.

Synonyms

Crater field; Multiple crater; On Venus, if overlapping: irregular crater

Description

A given cluster’s size depends on atmospheric density, strength and density of the impactor, and speed and angle of atmospheric entry. Individual craters in Martian clusters have diameters of a few tens of meters down to the limit of detection, and the clusters can be spread over areas from 10s of meters to a few 100 m across (Popova et al. 2003; 2007; Daubar et al. 2013). On Venus, irregular craters are a tight cluster of 1–10 km-sized impact craters characterized by irregular and/or discontinuous rims and hummocky or multiple floors (Fig. 1).

Crater Cluster (Atmospheric Breakup), Fig. 1
figure 3186 figure 3186

Lilian crater, Venus, 13.5 km; 25.6°N, 336.0°E. Scale bar 10 km. P-38290 Magellan (NASA/JPL)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo RD, Ponce JF, Rocca M, Rabassa J, Corbella H (2009) Bajada del Diablo impact crater-strewn field: the largest crater field in the southern hemisphere. Geomorphology 110:58–67

    Article  Google Scholar 

  • Cochrane CG, Ghail RC (2006) Topographic constraints on impact crater morphology on Venus from high-resolution stereo synthetic aperture radar digital elevation models. J Geophys Res 111:e04007. doi:10.1029/2005je002570

    Google Scholar 

  • Daubar IJ, McEwen AS, Byrne S, Kennedy MR, Ivanov B (2013) The current Martian cratering rate. Icarus 225(1):506–516

    Article  Google Scholar 

  • Hartmann WK, Engel S, Chyba C, Sagan C (1994) Mars cratering record as a probe of ancient pressure variations. Bull Am Astron Soc 26:1116

    Google Scholar 

  • Herrick RR, Phillips RJ (1994) Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population. Icarus 112:253–281

    Article  Google Scholar 

  • Ivanov BA, Basilevsky AT, Neukum G (1997) Atmospheric entry of large meteoroids: implication to Titan. Planet Space Sci 45:993–1007

    Article  Google Scholar 

  • Kenkmann T, Artemieva NA, Wünnemann K, Poelchau MH, Elbeshausen D, Núñez Del Prado H (2009) The Carancas meteorite impact crater, Peru: geologic surveying and modeling of crater formation and atmospheric passage. Meteorit Planet Sci 44:985–1000

    Article  Google Scholar 

  • Korycansky DG, Zahnleb KJ (2004) Atmospheric impacts, fragmentation, and small craters on Venus. Icarus 169(2):287–299

    Article  Google Scholar 

  • Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZN (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573

    Article  Google Scholar 

  • McGill GE (2004) Geologic map of the Bereghinya Planitia Quadrangle (V–8), Venus. Geologic investigations series I–2794. U.S. Geological Survey, Flagstaff, AZ

    Google Scholar 

  • Neish CD, Lorenz RD (2012) Titan’s global crater population: a new assessment. Planet Space Sci 60:26–33. doi:10.1016/j.pss.2011.02.016

    Article  Google Scholar 

  • Passey QR, Melosh HJ (1980) Effects of atmospheric breakup on crater field formation. Icarus 42:211–233

    Article  Google Scholar 

  • Popova OP, Nemtchinov IV, Hartmann WK (2003) Bolides in the present and past Martian atmosphere and effects on cratering processes. Meteorit Planet Sci 38:905–925

    Article  Google Scholar 

  • Popova OP, Hartmann WK, Nemtchinov IV, Richardson DC, Berman DC (2007) Crater clusters on Mars: shedding light on Martian ejecta launch conditions. Icarus 190(1):50–73

    Article  Google Scholar 

  • Schultz PH, Gault DE (1985) Clustered impacts – experiments and implications. J Geophys Res 90:3701–3732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Daubar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Daubar, I., Kreslavsky, M.A. (2015). Crater Cluster (Atmospheric Breakup). In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_74

Download citation

Publish with us

Policies and ethics