Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Crater Cluster (Atmospheric Breakup)

  • Ingrid Daubar
  • Mikhail A. Kreslavsky
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_74


Group of separated (sometimes overlapping) impact craters that formed simultaneously, likely by the breakup of an impacting body in the atmosphere.


 Crater field;  Multiple crater; On Venus, if overlapping:  irregular crater


A given cluster’s size depends on atmospheric density, strength and density of the impactor, and speed and angle of atmospheric entry. Individual craters in Martian clusters have diameters of a few tens of meters down to the limit of detection, and the clusters can be spread over areas from 10s of meters to a few 100 m across (Popova et al. 2003; 2007; Daubar et al. 2013). On Venus, irregular craters are a tight cluster of 1–10 km-sized impact craters characterized by irregular and/or discontinuous rims and hummocky or multiple floors (Fig. 1).
This is a preview of subscription content, log in to check access.


  1. Acevedo RD, Ponce JF, Rocca M, Rabassa J, Corbella H (2009) Bajada del Diablo impact crater-strewn field: the largest crater field in the southern hemisphere. Geomorphology 110:58–67CrossRefGoogle Scholar
  2. Cochrane CG, Ghail RC (2006) Topographic constraints on impact crater morphology on Venus from high-resolution stereo synthetic aperture radar digital elevation models. J Geophys Res 111:e04007. doi:10.1029/2005je002570Google Scholar
  3. Daubar IJ, McEwen AS, Byrne S, Kennedy MR, Ivanov B (2013) The current Martian cratering rate. Icarus 225(1):506–516CrossRefGoogle Scholar
  4. Hartmann WK, Engel S, Chyba C, Sagan C (1994) Mars cratering record as a probe of ancient pressure variations. Bull Am Astron Soc 26:1116Google Scholar
  5. Herrick RR, Phillips RJ (1994) Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population. Icarus 112:253–281CrossRefGoogle Scholar
  6. Ivanov BA, Basilevsky AT, Neukum G (1997) Atmospheric entry of large meteoroids: implication to Titan. Planet Space Sci 45:993–1007CrossRefGoogle Scholar
  7. Kenkmann T, Artemieva NA, Wünnemann K, Poelchau MH, Elbeshausen D, Núñez Del Prado H (2009) The Carancas meteorite impact crater, Peru: geologic surveying and modeling of crater formation and atmospheric passage. Meteorit Planet Sci 44:985–1000CrossRefGoogle Scholar
  8. Korycansky DG, Zahnleb KJ (2004) Atmospheric impacts, fragmentation, and small craters on Venus. Icarus 169(2):287–299CrossRefGoogle Scholar
  9. Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZN (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573CrossRefGoogle Scholar
  10. McGill GE (2004) Geologic map of the Bereghinya Planitia Quadrangle (V–8), Venus. Geologic investigations series I–2794. U.S. Geological Survey, Flagstaff, AZGoogle Scholar
  11. Neish CD, Lorenz RD (2012) Titan’s global crater population: a new assessment. Planet Space Sci 60:26–33. doi:10.1016/j.pss.2011.02.016CrossRefGoogle Scholar
  12. Passey QR, Melosh HJ (1980) Effects of atmospheric breakup on crater field formation. Icarus 42:211–233CrossRefGoogle Scholar
  13. Popova OP, Nemtchinov IV, Hartmann WK (2003) Bolides in the present and past Martian atmosphere and effects on cratering processes. Meteorit Planet Sci 38:905–925CrossRefGoogle Scholar
  14. Popova OP, Hartmann WK, Nemtchinov IV, Richardson DC, Berman DC (2007) Crater clusters on Mars: shedding light on Martian ejecta launch conditions. Icarus 190(1):50–73CrossRefGoogle Scholar
  15. Schultz PH, Gault DE (1985) Clustered impacts – experiments and implications. J Geophys Res 90:3701–3732CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of ArizonaTucsonUSA
  2. 2.Earth and Planetary SciencesUniversity of CaliforniaSanta CruzUSA