Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Composite Volcano

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_62

Definition

“Relatively large, long-lived constructional volcanic edifice, comprising lava and volcaniclastic products erupted from one or more vents…” (Davidson and de Silva 2000).

Category

A type of  volcano.

Synonyms

Note

The previous but still existent name “stratovolcano” implied alternating layers of lava and pyroclastic rocks. However, the more recent term “composite volcano” better describes the complex architecture of this volcano type, superimposed occasionally by lava domes, dotted by scoria cones, cut through by secondary vents, etc., giving a more complex structure relative to the textbook “pancake” images.

Description

In a mature stage, composite volcanoes are prominent features, larger than scoria cones, lava domes, and other monogenetic volcanoes and steeper than shield volcanoes. Although they are all steep and high landforms, they have different shapes including the regular, symmetrical “cones” (which are not cones sensu stricto since...

This is a preview of subscription content, log in to check access.

References

  1. Bindeman I, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68:841–865CrossRefGoogle Scholar
  2. Carr MJ, Pontier NK (1981) Evolution of a young parasitic cone towards a mature central vent: Izalco and Santa Ana volcanoes in El Salvador, central America. J Volcanol Geotherm Res 11:277–292CrossRefGoogle Scholar
  3. Cotton CA (1952) Volcanoes as landscape forms, 2nd edn. Whitcombe and Tombs, ChristchurchGoogle Scholar
  4. Davidson J, de Silva S (2000) Composite volcanoes. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic, New York, pp 663–681Google Scholar
  5. Figueroa O, Déruelle B, Demaiffe D (2009) Genesis of adakite-like lavas of Licancabur volcano (Chile-Bolivia, Central Andes). Compte Rendus Geosci 341:310–318CrossRefGoogle Scholar
  6. Francis P (1993) Volcanoes: a planetary perspective. Oxford University Press, Oxford, p 443Google Scholar
  7. Garrison G, Davidson J, Reid M, Turner S (2006) Source versus differentiation controls on U-series disequilibria: insights from Cotopaxi Volcano, Ecuador. Earth Planet Sci Lett 244:548–565CrossRefGoogle Scholar
  8. Grosse P, van Wyk de Vries B, Petrinovic I, Euillades PA, Alvarado GE (2009) Morphometry and evolution of arc volcanoes. Geology 37:651–654CrossRefGoogle Scholar
  9. Hargitai H, Karátson D (2003) Silicic volcanism on Io? Evidence from Tohil Mons and other possible volcanic cones. 34th Lunar Planet Sci Conf, abstract volume, 1543–1544, HoustonGoogle Scholar
  10. Head JW, Wilson L (1998) Tharsis Montes as composite volcanoes?: 1. the role of explosive volcanism in edifice construction and implications for the volatile contents of edifice-forming magmas. Lunar Planet Sci XXIX, abstract #1127, HoustonGoogle Scholar
  11. Hildreth W, Lanphere MA (1994) Potassium-argon geochronology of a basalt-andesite-dacite arc system – the Mount Adams volcanic field, Cascade Range of southern Washington. Geol Soc Am Bull 106(11):1413–1429CrossRefGoogle Scholar
  12. Hora J, Singer BB, Wörner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constraints from Volcán Parinacota, ChileGoogle Scholar
  13. Karátson D, Thouret J-C, Moriya I, Lomoschitz A (1999) Erosion calderas: origins, processes, structural and climatic control. Bull Volcanol 61:174–193CrossRefGoogle Scholar
  14. Karátson D, Favalli M, Tarquini S, Fornaciai A, Wörner G (2010) The regular shape of stratovolcanoes: a DEM-based morphometrical approach. J Volcanol Geotherm Res 193:171–181. doi:10.1016/j.jvolgeores.2010.03.012CrossRefGoogle Scholar
  15. Karátson D, Telbisz T, Wörner G (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: an SRTM DEM based analysis. Geomorphology 139–140:122–135. doi:10.1016/j.geomorph.2011.10.010CrossRefGoogle Scholar
  16. Kleinhans MG, Markies H, de Vet SJ, in ‘t Veld AC, Postema FN (2011) Static and dynamic angles of repose in loose granular materials under reduced gravity. J Geophys Res 116:E11004. doi:10.1029/2011JE003865, 2Google Scholar
  17. Lacey A, Ockendon JR, Turcotte DL (1981) On the geometrical form of volcanoes. Earth Planet Sci Lett 54(1):139–143CrossRefGoogle Scholar
  18. Lang NP (2009) Another look at the summit caldera of apollinaris patera. 40th Lunar Planet Sci Conf, abstract #2370, HoustonGoogle Scholar
  19. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218CrossRefGoogle Scholar
  20. Lockwood JP, Hazlett R (2010) Volcanoes: global perspectives. Wiley-Blackwell, Hoboken, p 552Google Scholar
  21. Macdonald G (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, p 510Google Scholar
  22. Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean Orocline (13° to 18°S): tracing crustal thickening and magma generation through time and space. Geol Soc Am Bull B26538.1. doi:10.1130/B26538Google Scholar
  23. Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean Orocline. Geol Soc Am Bull 122:162–182CrossRefGoogle Scholar
  24. McKnight SB, Williams SN (1997) Old cinder cone or young composite volcano? The nature of Cerro Negro, Nicaragua. Geology 25:339–342CrossRefGoogle Scholar
  25. Milne J (1878) On the forms of volcanoes. Geol Mag 5:337–345 (Decade II)CrossRefGoogle Scholar
  26. Ollier CD (1988) Volcanoes. Blackwell, OxfordGoogle Scholar
  27. Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets. Earth Planet Sci Lett 310:167–181CrossRefGoogle Scholar
  28. Pike RJ, Clow GD (1981) Revised classification of terrestrial volcanoes and catalog of topographic dimensions, with new results on edifice volume. U.S. geological survey open-file report 81-1038, p 40Google Scholar
  29. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22(3–4):163–197CrossRefGoogle Scholar
  30. Smellie JL (2009) Terrestrial subice volcanism: landform morphology, sequence characteristics and environmental influences, and implications for candidate Mars examples. Geol Soc Am Spec Paper 453:55–76CrossRefGoogle Scholar
  31. Stewart EM, Head JW (2001) Ancient Martian volcanoes in the Aeolis region: new evidence from MOLA data. J Geophys Res 106(E8):17505–17513Google Scholar
  32. Thouret J-C (1999) Volcanic geomorphology – an overview. Earth-Sci Rev 47:95–131CrossRefGoogle Scholar
  33. Wadge G (1982) Steady state volcanism: evidence from eruption histories of polygenetic volcanoes. J Geophys Res: Solid Earth (1978–2012) 87, B5:4035–4049Google Scholar
  34. Werner SC (2009) The global Martian volcanic evolutionary history. Icarus 201:44–68CrossRefGoogle Scholar
  35. Williams DA, Schenk PM, Moore JM, Keszhelyi LP, Turtle EP, Jaeger WL, Radebaugh J, Milazzo MP, Lopes RMC, Greeley R (2004) Mapping of the Culann–Tohil region of Io from Galileo imaging data. Icarus 169:80–97CrossRefGoogle Scholar
  36. Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE, Becker TL (2011) Volcanism on Io: new insights from global geologic mapping. Icarus 214:91–112CrossRefGoogle Scholar
  37. Wood CA (1978) Morphometric evolution of composite volcanoes. Geophys Res Lett 5(6):437–439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary