Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Rootless Cone/Vent

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_529


Rootless vents are volcanic exit points of fragmented particles (pyroclasts) derived from an explosion that is not directly connected to vertical conduit and magma source (Bruno et al. 2004; Keszthelyi and Self 1998; Lanagan et al. 2001; Self et al. 1996; Sheth et al. 2004). The fragmented pyroclastic deposits accumulating around the rootless vent is the rootless cone.



Rootless cones and vents are referring only to the fact that the volcanic landform associated with them has not been fed directly by vertical magmatic feeder networks. The type of lateral feeding and style of magma fragmentation therefore determine the texture of deposits, size, and general volcanic architecture of the rootless cone.


Rootless cones are generally smaller than  cinder cones. They are most commonly in the same size range as lava  spatter cones.

Subtypes on Earth

  1. (1)

     Hornito: lava flow surface morphology features that are formed...

This is a preview of subscription content, log in to check access.


  1. Bleacher JE, Glaze LS, Greeley R, Hauber E, Baloga SM, Sakimoto SEH, Williams DA, Glotch TD (2009). Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, Mars. J Volcanol Geoth Res 185(1–2):96–102CrossRefGoogle Scholar
  2. Bruno BC, Fagents SA, Thordarson T, Baloga SM, Pilger E (2004) Clustering within rootless cone groups on Iceland and Mars: effect of nonrandom processes. J Geophys Res Planet 109(E7):E07009CrossRefGoogle Scholar
  3. Bruno BC, Fagents SA, Hamilton CW, Burr DM, Baloga SM (2006) Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: using spatial distribution as a remote sensing tool. J Geophys Res 111:E06017. doi:10.1029/2005JE002510Google Scholar
  4. Burr DM, Bruno BC, Lanagan PD, Glaze LS, Jaeger WL, Soare RJ, Wan Bun Tseung J-M, Skinner JA Jr, Baloga SM (2009) Mesoscale raised rim depressions (MRRDs) on Earth: a review of the characteristics, processes, and spatial distributions of analogs for Mars. Planet Space Sci 57:579–596CrossRefGoogle Scholar
  5. Christensen PR, Bandfield JL, Bell JF, Gorelick N, Hamilton VE, Ivanov A, Jakosky BM, Kieffer HH, Lane MD, Jakosky BM, Kieffer HH, Lane MD, Malin MC, McConnochie T, McEwen AS, McSween HY, Mehall GL, Moersch JE, Nealson KH, Rice JW, Richardson MI, Ruff SW, Smith MD, Titus TN, Wyatt MB (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300(5628):2056–2061CrossRefGoogle Scholar
  6. de Pablo MA, Komatsu G (2009) Possible pingo fields in the Utopia basin, Mars: geological and climatical implications. Icarus 199(1):49–74CrossRefGoogle Scholar
  7. de Wet AP, Bleacher JE, Garry WB (2012) Origins of sinuous and braided channels on Ascraeus Mons, Mars – A Keck Geology Consortium Undergraduate Research Project. 43rd Lunar and Planetary Sci Conf, abstract #2502, HoustonGoogle Scholar
  8. Fisher RV (1968) Puu Hou littoral cones, Hawaii. Geol Rundsch 57:837–864CrossRefGoogle Scholar
  9. Garcia JH, Hurtado Jr. JM (2012) Phreatomagmatic activity on the Moon: possibility of pseudocraters on Mare Frigoris. 43rd Lunar Planet Sci Conf, abstract #1390, HoustonGoogle Scholar
  10. Greeley R, Fagents SA (2001) Volcanic pseudocraters on Mars: Icelandic Analogs. Lunar Planet Sci XXXII, abstract #1871, HoustonGoogle Scholar
  11. Hamilton CW, Fagents SA, Thordarson T (2010) Explosive lava-water interactions II: self-organization processes among volcanic rootless eruption sites in the 1783–1784 Laki lava flow, Iceland. Bull Volcanol 72(4):469–485CrossRefGoogle Scholar
  12. Hamilton CW, Fagents SA, Thordarson T (2011) Lava-ground ice interactions in Elysium Planitia, Mars: geomorphological and geospatial analysis of the Tartarus Colles cone groups. J Geophys Res Planet 116:E03004CrossRefGoogle Scholar
  13. Jurado-Chichay Z, Rowland SK, Walker GPL (1996a) The formation of circular littoral cones from tube-fed pahoehoe: Mauna Loa, Hawai’i. Bull Volcanol 57(7):471–482Google Scholar
  14. Jurado-Chichay Z, Urrutia-Fucugauchi J, Rowland SK (1996b) A paleomagnetic study of the Pohue Bay flow and its associated coastal cones, Mauna Loa volcano, Hawaii: constraints on their origin and temporal relationships. Phys Earth Planet Inter 97(1–4):269–277CrossRefGoogle Scholar
  15. Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res Solid Earth 103(B11):27447–27464CrossRefGoogle Scholar
  16. Keszthelyi LP, Jaeger WL, Dundas CM, Martínez-Alonso S, McEwen AS, Milazzo MP (2010) Hydrovolcanic features on Mars: preliminary observations from the first Mars year of HiRISE imaging. Icarus 205(1):211–229CrossRefGoogle Scholar
  17. Lanagan PD, McEwen AS, Keszthelyi LP, Thordarson T (2001) Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophys Res Lett 28(12):2365–2367CrossRefGoogle Scholar
  18. Lanz JK, Saric MB (2009) Cone fields in SW Elysium Planitia: hydrothermal venting on Mars? J Geophys Res 114:E02008. doi:10.1029/2008JE003209Google Scholar
  19. Martinez-Alonso S, Mellon MT, Banks ME, Keszthelyi LP, McEwen AS, Hi RT (2011) Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars. Icarus 212(2):597–621CrossRefGoogle Scholar
  20. Mattox TN, Mangan MT (1997) Littoral hydrovolcanic explosions: a case study of lava-seawater interaction at Kilauea Volcano. J Volcanol Geotherm Res 75(1–2):1–17CrossRefGoogle Scholar
  21. Moore RB (1992) Volcanic geology and eruption frequency, lower east rift-zone of Kilauea volcano, Hawaii. Bull Volcanol 54(6):475–483CrossRefGoogle Scholar
  22. Németh K, Cronin SJ (2009) Volcanic structures and oral traditions of volcanism of Western Samoa (SW Pacific) and their implications for hazard education. J Volcanol Geotherm Res 186(3–4):223–237CrossRefGoogle Scholar
  23. Page DP, Murray JB (2006) Stratigraphical and morphological evidence for pingo genesis in the Cerberus plains. Icarus 183(1):46–54CrossRefGoogle Scholar
  24. Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna-Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56(5):343–360CrossRefGoogle Scholar
  25. Self S, Thordarson T, Keszthelyi L, Walker GPL, Hon K, Murphy MT, Long P, Finnemore S (1996) A new model for the emplacement of Columbia River Basalts as large, inflated pahoehoe lava flow fields. Geophys Res Lett 23(19):2689–2692CrossRefGoogle Scholar
  26. Sheth HC, Mathew G, Pande K, Mallick S, Jena B (2004) Cones and craters on Mount Pavagadh, Deccan Traps: rootless cones? Proc Indian Acad Sci Earth Planet Sci 113(4):831–838Google Scholar
  27. Skilling IP (2002) Basaltic pahoehoe lava-fed deltas; large-scale characteristics, clast generation, emplacement processes and environmental discrimination. In: Smellie JL, Chapman MG (eds) Volcano-ice interaction on Earth and Mars. Geological Society of London, London, pp 91–113Google Scholar
  28. Stevenson JA, Mitchell NC, Mochrie F, Cassidy M, Pinkerton H (2012) Lava penetrating water: the different behaviours of pahoehoe and ‘a’ a at the Nesjahraun, Aingvellir, Iceland. Bull Volcanol 74(1):33–46CrossRefGoogle Scholar
  29. Wilson L, Parfitt EA, Head JW (1995) Explosive Volcanic-Eruptions VIII. The role of magma recycling in controlling the behavior of Hawaiian-Style Lava Fountains. Geophys J Int 121(1):215–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Agriculture and Environment, Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand