Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Climbing Dune

  • Matthew Chojnacki
  • Henrik Hargitai
  • Ákos Kereszturi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_51


A climbing dune is a high-order bedform with a lee face on the uphill side of a topographic slope >8° (Chojnacki et al. 2010). Climbing dunes are not stabilized, such as an echo dune.


A type of  obstacle dune



Climbing dunes are bedforms with lee faces on the uphill side and lay on topography >8° in slope (Chojnacki et al. 2010).


“Sand glacier”: sand accumulations formed as broad, fan-shaped plains that develop where sand is blown up the sides of mountains and through passes and saddles to spread out on the opposite side (Stone 1967).


The morphology of climbing dunes is broadly similar to barchanoid dune morphology. However, climbing dunes have sporadic slip faces that form on both spurs as well as gullies, primarily on the lower third of their wall slope. A “sand ramp” morphology (Lancaster and Tchakerian 1996; Chojnacki et al. 2010) or “barchan trains” may be observed, although...

This is a preview of subscription content, log in to check access.


  1. Chojnacki M, Moersch JE, Burr DM (2010) Climbing and falling dunes in Valles Marineris, Mars. Geophys Res Lett 37:l08201. doi:10.1029/2009GL042263CrossRefGoogle Scholar
  2. Chojnacki M, Burr DM, Moersch JE (2014) Valles Marineris dune fields as compared with other martian populations: diversity of dune compositions, morphologies, and thermophysical properties. Icarus 230:96–142. doi:10.1016/j.icarus.2013.08.018CrossRefGoogle Scholar
  3. Evan R (1962) Falling and climbing sand dunes in the Cronese “Cat” mountain area, San Bernardino County, California. J Geophys Res 70:107–113Google Scholar
  4. Howard AH (1985) Interaction of sand transport with topography with local winds in the northern Peruvian coastal desert. In: Barndorff-Nielsen OE et al (eds) International workshop on the physics of blown sand, University of Aarhus, Aarhus, pp 511–544Google Scholar
  5. Koscielniak DE (1973) Eolian deposits on a volcanic terrain near Saint Anthony, Idaho. Master of Arts thesis, State University of New York, BuffaloGoogle Scholar
  6. Lancaster N, Tchakerian VP (1996) Geomorphology and sediment of sand ramps in the Mojave Desert. Geomorphology 17(151):165Google Scholar
  7. Liu X, Li S, Shen J (1999) Wind tunnel simulation of mountain dunes. J Arid Environ 42:49–59. doi:10.1006/jare.1998.0488CrossRefGoogle Scholar
  8. Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, LondonCrossRefGoogle Scholar
  9. Stone RO (1967) A desert glossary. Earth Sci Rev 3:211–268CrossRefGoogle Scholar
  10. Tirsch D, Craddock RA, Platz T, Maturilli A, Helbert J, Jaumann R (2012) Spectral and petrologic analyses of basaltic sands in Ka’u Desert (Hawaii) – implications for the dark dunes on Mars. Earth Surf Process Landf 37(4):434–448. doi:10.1002/esp.2266CrossRefGoogle Scholar
  11. Tsoar H, White B, Berman E (1996) The effect of slopes on sand transport – numerical modeling. Landscape Urban Plan 34:171–181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Matthew Chojnacki
    • 1
  • Henrik Hargitai
    • 2
  • Ákos Kereszturi
    • 3
  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  2. 2.NASA Ames Research Center/NPPMoffett FieldUSA
  3. 3.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary