Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Aeolian Deposits

  • Henrik HargitaiEmail author
  • Ákos Kereszturi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_457


Wind-blown deposits on planetary surfaces, may be unconsolidated (loose) or indurated (cemented, lithified).



Wind-transported and deposited particulate material on planetary surfaces that may form structures with varied morphology, including  sand sheets,  ripples and  dunes. Aeolian deposits in ice-cemented structures may form Polar Layered Deposits on Mars.

Grain Size

In the geological sciences, dust is defined as particles with diameters smaller than 62.5 μm. Sand is defined as particles (regardless of composition) in the range of 62.5–2,000 μm.

In the atmospheric sciences, dust is usually defined as the material that can be readily suspended by wind, whereas sand is rarely suspended and is predominantly transported by saltation (Kok et al. 2012).

Mean grain size of sand on Earth is 160–330 μm. Grain size on Mars is estimated between 60 and 600 μm depending on author, calculation, and method of...

This is a preview of subscription content, log in to check access.


  1. Almeida MP, Parteli EJR, Andrade JS Jr, Herrmann HJ (2008) Giant saltation on Mars. Proc Natl Acad Sci U S A 105(17):6222–6226CrossRefGoogle Scholar
  2. Anderson RS (1987) A theoretical model for aeolian impact ripples. Sedimentology 34:943–956CrossRefGoogle Scholar
  3. Anderson RS, Hallet B (1986) Sediment transport by wind: toward a general model. Geol Soc Am Bull 97:523–535CrossRefGoogle Scholar
  4. Andreotti B (2004) A two species model of aeolian sand transport. J Fluid Mech 510:47–70CrossRefGoogle Scholar
  5. Bagnold RA (1941) The physics of brown sand and desert dunes. Methuen, LondonGoogle Scholar
  6. Basilevsky AT, Head JW (2012) Venus: Analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J Geophys Res 107(E8). doi:10.1029/2001JE001584Google Scholar
  7. Bourke MC, Edgett KS, Cantor BA (2008) Recent aeolian dune change on mars. Geomorphology 94:247–255CrossRefGoogle Scholar
  8. Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121(1–2):1–14CrossRefGoogle Scholar
  9. Carpenter AH (1948) Principles of historical geology applied to neighboring planets and life on mars. Pop Astron 56:233–246Google Scholar
  10. Chojnacki M, Moersch JE, Burr DM (2010) Climbing and falling dunes in valles marineris, mars. Geophys Res Lett 37:l08201. doi:10.1029/2009GL042263CrossRefGoogle Scholar
  11. Claudin P, Andreotti B (2006) A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet Sci Lett 252(1–2):30–44CrossRefGoogle Scholar
  12. Craddock RA (2011) Aeolian processes on the terrestrial planets: recent observations and future focus. Prog Phys Geogr 36(1) p110:1–15. doi:10.1177/0309133311425399Google Scholar
  13. Elbelrhiti H, Claudin P, Andreotti B (2005) Field evidence for surface-wave-induced instability of sand dunes. Nature 437:720–723CrossRefGoogle Scholar
  14. Greeley R, Arvidson RE (1990) Aeolian processes on Venus. Earth Moon Planets 50(51):127–157CrossRefGoogle Scholar
  15. Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, New York, Cambridge New York New Rochelle Melbourne Sydney. http://assets.cambridge.org/97805213/59627/frontmatter/9780521359627_frontmatter.pdf
  16. Greeley R, Lancaster N, Lee S, Thomas P (1992) Martian aeolian processes, sediments and features. In: Kieffer H, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 730–767Google Scholar
  17. Greeley R, Bender K, Weitz CM (1995) Wind-related features and processes on Venus: summary of Magellan results. Icarus 115(2):399–420CrossRefGoogle Scholar
  18. Greeley R, Bridges NT, Kuzmin RO, Laity JE (2002) Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. J Geophys Res 107(E1):10129–10150Google Scholar
  19. Hayward RK, Mullins KF, Fenton LK, Hare TM, Titus TN, Bourke M, Colprete A, Christensen PR (2007) Mars Global Digital Dune Database and initial science results. J Geophys Res 112, E11007. doi:10.1029/2007JE002943Google Scholar
  20. Iverson JD, White BR (1982) Saltation thresholds on Earth, Mars and Venus. Sedimentology 29:111–119CrossRefGoogle Scholar
  21. Kok JF, Renno NO (2006) Enhancement of the emission of mineral dust aerosols by electric forces. Geophys Res Lett 33:L19S10. doi:10.1029/2006GL026284CrossRefGoogle Scholar
  22. Kok JF, Renno NO (2008) Electrostatics in wind-blown sand. Phys Rev Lett 100:014501CrossRefGoogle Scholar
  23. Kok JF, Parteli EJR, Michaels TI, Bou Karam D (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:106901CrossRefGoogle Scholar
  24. Lancaster N (1995) Dune morphology and morphometry. In: Geomorphology of desert dunes. Routledge, London and New York. http://www.amazon.com/Geomorphology-Desert-Routledge-Physical-Environment/dp/041506094X
  25. Lorenz RD, Lunine JI, Grier JJA, Fisher MA (1995) Prediction of aeolian features on planets: application to Titan paleoclimatology. J Geophys Res 100(E12):26377–26386CrossRefGoogle Scholar
  26. Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F, Soderblom LA, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callhan P, Encrnaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006) The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312:724–727CrossRefGoogle Scholar
  27. Lowell P (1910) Mars as the abode of life. Macmillan, New YorkGoogle Scholar
  28. Mizser A, Kereszturi Á (2007) Climatic planetomorphology: hypothetical synthesis from available data. 38th Lunar Planet Sci Conf, abstract #1523, HoustonGoogle Scholar
  29. Parteli EJR (2007) Sand dunes on mars and on earth. Dissertation, Institut für Computerphysik der Universität StuttgartGoogle Scholar
  30. Parteli EJR, Durán O, Herrmann HJ (2007) The minimal size of a barchan dune. Phys Rev E 75:01130, rXiv:0705.1778CrossRefGoogle Scholar
  31. Pécsi M (1968) Loess. In: Fairbridge RW (ed) The encyclopedia of geomorphology. Reinhold, New York, pp 674–678CrossRefGoogle Scholar
  32. Prigozhin L (1999) Nonlinear dynamics of aeolian sand ripples. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(1):729–733Google Scholar
  33. Sagan C, Veverka J, Fox P, Dubisch R et al (1972) Variable features on Mars, 2. Mariner 9 global results. J Geophys Res 78:4163–4196CrossRefGoogle Scholar
  34. Sharp RP (1963) Wind ripples. J Geol 71:617–636CrossRefGoogle Scholar
  35. Thomas DSG (1989) Aeolian sand deposits. In: Thomas DSG (ed) Arid zone geomorphology. Belhaven Press, London, pp 232–261Google Scholar
  36. Thomas M, Clarke JDA, Pain CF (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible earth analogues. Aust J Earth Sci 52(3):365–378. doi:10.1080/08120090500134597CrossRefGoogle Scholar
  37. Tokano T, Neubauer FM (2002) Tidal winds on Titan caused by Saturn. Icarus 158(2):499–515Google Scholar
  38. Tsoar H (2001) Types of aeolian sand dunes and their formation. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics. Lecture notes in physics, vol 582. Springer, Berlin, p 403Google Scholar
  39. Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153CrossRefGoogle Scholar
  40. Ungar JE, Haff PK (1987) Steady-state saltation in air. Sedimentology 34:289–299CrossRefGoogle Scholar
  41. Watson A (1989) Windflow characteristics and aeolian entrainment. In: Thomas DSG (ed) Arid zone geomorphology. Belhaven Press, LondonGoogle Scholar
  42. Wilson IG (1972) Aeolian bedforms – their development and origins. Sedimentology 19:173–210Google Scholar
  43. Zimbelman JR (2000) Non-active dunes in the Acheron Fossae region of mars between the Viking and mars global surveyor eras. Geophys Res Lett 27(7):1069–1072CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary