Skip to main content

Crater-Associated Radar-Dark Diffuse Features

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 12 Accesses

Definition

An extended surface feature associated with an impact crater and appearing on radar images as a dark area with diffuse boundaries.

Description

A dark feature in close association with an impact crater on Venus that appears on radar images. The radar-dark area generally extends from tens to hundreds of km beyond the blocky continuous ejecta which is radar bright. Radar-dark diffuse features (DDFs) were identified in the side-looking radar backscatter cross-sectional images obtained with the synthetic aperture radar (SAR). Some DDFs have a prominent planform of a radar-dark parabola open to the west. Circular radar-dark annuli around some large craters are also observed on the Moon and Mercury, although the specific term DDF is not commonly applied to them.

Subtypes (Venus)

Emissivity parabola (detected by radiometric measurements).

Radar-dark diffuse features (DDFs) subtypes (Basilevsky and Head 2006) in increasing age (Fig. 1):

  1. (1)

    Radar dark parabola(13.9 % of craters...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arvidson RE, Baker VR, Elachi C, Saunders RS, Wood JA (1991) Magellan: Initial analysis of Venus surface modification. Science 252:270–276. doi:10.1029/92JE01384

    Google Scholar 

  • Basilevsky AT, Head JW (2002) Venus: analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J Geophys Res 107(E8):5061. doi:10.1029/2001JE001584

    Article  Google Scholar 

  • Basilevsky AT, Head JW (2006) Impact craters on regional plains on Venus: age relations with wrinkle ridges and implications for the geological evolution of Venus. J Geophys Res 111:E03006. doi:10.1029/2005JE002473

    Google Scholar 

  • Basilevsky AT, Head JW, Setyaeva IV (2003) Venus: estimation of age of impact craters on the basis of degree of preservation of associated radar-dark deposits. Geophys Res Lett 30(18):1950. doi:10.1029/2003GL017504

    Article  Google Scholar 

  • Bondarenko N (2003) Evolution of radar-dark diffuse crater-related features on Venus EGS – AGU – EUG Joint Assembly. Abstracts from the meeting held in Nice, 6–11 Apr 2003, abstract #7005

    Google Scholar 

  • Bondarenko NV, Head JW (2004) Radar-dark impact crater – related parabolas on Venus: characterization of deposits with Magellan emissivity data. J Geophys Res 109:E09004. doi:10.1029/2004JE002256

    Google Scholar 

  • Bondarenko NV, Head JW (2009) Crater-associated dark diffuse features on Venus: properties of surficial deposits and their evolution. J Geophys Res 114:E03004. doi:10.1029/2008JE003163

    Google Scholar 

  • Campbell DB, Head JW, Hine AA, Harmon JK, Senske DA, Fisher PC (1989) Styles of volcanism on Venus – new Arecibo high resolution radar data. Science 246:373–377, ISSN 0036-8075. doi:10.1126/science.246.4928.373

    Google Scholar 

  • Campbell DB, Stacy NJS, Newman WI, Arvidson RE, Jones EM, Musser GS, Roper AY, Schaller C (1992) Magellan observations of extended impact crater related features on the surface of Venus. J Geophys Res 97:16249–16277. doi:10.1029/92JE01634

    Article  Google Scholar 

  • Ghent RR, Leverington DW, Campbell BA, Hawke BR, Campbell DB (2005) Earth-based observations of radar-dark crater haloes on the Moon: implications for regolith properties. J Geophys Res 110(E2), CiteID E02005. doi:10.1029/2004JE002366

    Google Scholar 

  • Harmon JK, Martin AS, Bryan JB, Head JW III, Rice MS, Campbell DB (2007) Mercury: radar images of the equatorial and midlatitude zones. Icarus 187:374–405. doi:10.1016/j.icarus.2006.09.026

    Article  Google Scholar 

  • Herrick RR, Phillips RJ (1994) Implications of a global survey of Venusian impact craters. Icarus 111:387–416. doi:10.1006/icar.1994.1152

    Article  Google Scholar 

  • Izenberg NR, Arvidson RE, Phillips RJ (1994) Impact crater degradation on Venusian plains. Geophys Res Lett 21:289–292. doi:10.1029/94GL00080

    Article  Google Scholar 

  • Keddie ST, Head JW (1995) Formation and evolution of volcanic edifices on the Dione Regio rise, Venus. J Geophys Res 100:11729–11754. doi:10.1029/95JE00822

    Article  Google Scholar 

  • McHone JF, Greeley R, Williams KK, Blumberg DG, Kuzmin RO (2002) Space shuttle observations of terrestrial impact structures using SIR-C and X-SAR radars. Meteorit Planet Sci 37(3):407–420. doi:10.1111/j.1945-5100.2002.tb00824.x

    Article  Google Scholar 

  • McKinnon WB, Zahnle KJ, Ivanov BA, Meloshm HJ (1997) Cratering on Venus: models and observations. In: Bougher SW et al (eds) Venus II: geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 969–1014

    Google Scholar 

  • Phillips RJ, Raubertas RF, Arvidson RE, Sarkar IC, Herrick RR, Izenberg N, Grimm RE (1992) Impact craters and Venus resurfacing history. J Geophys Res 97:15923–15948. doi:10.1029/92JE01696

    Article  Google Scholar 

  • Schaber GG, Strom RG, Moore HJ, Soderblom LA, Kirk RL et al (1992) Geology and distribution of impact craters on Venus: what are they telling us? J Geophys Res 97:13257–13301. doi:10.1029/92JE01246

    Article  Google Scholar 

  • Schaller CJ, Melosh HJ (1998) Venusian ejecta parabolas: comparing theory with observations. Icarus 131:123–137. doi:10.1006/icar.1997.5855

    Article  Google Scholar 

  • Takata T, Ahrens TJ, Phillips RJ (1995) Atmospheric effects on cratering on Venus. J Geophys Res 100(E11):23329–23348. doi:10.1029/95JE02641

    Article  Google Scholar 

  • Vervack RJ Jr, Melosh HJ (1992) Wind interaction with falling ejecta: origin of the parabolic features on Venus. Geophys Res Lett 19:525–528. doi:10.1029/91GL02812

    Article  Google Scholar 

  • Weitz CM, Plaut JJ, Greeley R, Saunders RS (1994) Dunes and microdunes on Venus: why were so few found in the Magellan data? Icarus 112:282–295. doi:10.1006/icar.1994.1181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya Bondarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Bondarenko, N. (2015). Crater-Associated Radar-Dark Diffuse Features. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_450

Download citation

Publish with us

Policies and ethics