Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Crater-Associated Radar-Dark Diffuse Features

  • Nataliya Bondarenko
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_450

Definition

An extended surface feature associated with an impact crater and appearing on radar images as a dark area with diffuse boundaries.

Description

A dark feature in close association with an impact crater on Venus that appears on radar images. The radar-dark area generally extends from tens to hundreds of km beyond the blocky continuous ejecta which is radar bright. Radar-dark diffuse features (DDFs) were identified in the side-looking radar backscatter cross-sectional images obtained with the synthetic aperture radar (SAR). Some DDFs have a prominent planform of a  radar-dark parabola open to the west. Circular radar-dark annuli around some large craters are also observed on the Moon and Mercury, although the specific term DDF is not commonly applied to them.

Subtypes (Venus)

 Emissivity parabola (detected by radiometric measurements).

Radar-dark diffuse features (DDFs) subtypes (Basilevsky and Head 2006) in increasing age (Fig. 1):
  1. (1)

     Radar dark parabola(13.9 % of craters...

This is a preview of subscription content, log in to check access.

References

  1. Arvidson RE, Baker VR, Elachi C, Saunders RS, Wood JA (1991) Magellan: Initial analysis of Venus surface modification. Science 252:270–276. doi:10.1029/92JE01384Google Scholar
  2. Basilevsky AT, Head JW (2002) Venus: analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J Geophys Res 107(E8):5061. doi:10.1029/2001JE001584CrossRefGoogle Scholar
  3. Basilevsky AT, Head JW (2006) Impact craters on regional plains on Venus: age relations with wrinkle ridges and implications for the geological evolution of Venus. J Geophys Res 111:E03006. doi:10.1029/2005JE002473Google Scholar
  4. Basilevsky AT, Head JW, Setyaeva IV (2003) Venus: estimation of age of impact craters on the basis of degree of preservation of associated radar-dark deposits. Geophys Res Lett 30(18):1950. doi:10.1029/2003GL017504CrossRefGoogle Scholar
  5. Bondarenko N (2003) Evolution of radar-dark diffuse crater-related features on Venus EGS – AGU – EUG Joint Assembly. Abstracts from the meeting held in Nice, 6–11 Apr 2003, abstract #7005Google Scholar
  6. Bondarenko NV, Head JW (2004) Radar-dark impact crater – related parabolas on Venus: characterization of deposits with Magellan emissivity data. J Geophys Res 109:E09004. doi:10.1029/2004JE002256Google Scholar
  7. Bondarenko NV, Head JW (2009) Crater-associated dark diffuse features on Venus: properties of surficial deposits and their evolution. J Geophys Res 114:E03004. doi:10.1029/2008JE003163Google Scholar
  8. Campbell DB, Head JW, Hine AA, Harmon JK, Senske DA, Fisher PC (1989) Styles of volcanism on Venus – new Arecibo high resolution radar data. Science 246:373–377, ISSN 0036-8075. doi:10.1126/science.246.4928.373Google Scholar
  9. Campbell DB, Stacy NJS, Newman WI, Arvidson RE, Jones EM, Musser GS, Roper AY, Schaller C (1992) Magellan observations of extended impact crater related features on the surface of Venus. J Geophys Res 97:16249–16277. doi:10.1029/92JE01634CrossRefGoogle Scholar
  10. Ghent RR, Leverington DW, Campbell BA, Hawke BR, Campbell DB (2005) Earth-based observations of radar-dark crater haloes on the Moon: implications for regolith properties. J Geophys Res 110(E2), CiteID E02005. doi:10.1029/2004JE002366Google Scholar
  11. Harmon JK, Martin AS, Bryan JB, Head JW III, Rice MS, Campbell DB (2007) Mercury: radar images of the equatorial and midlatitude zones. Icarus 187:374–405. doi:10.1016/j.icarus.2006.09.026CrossRefGoogle Scholar
  12. Herrick RR, Phillips RJ (1994) Implications of a global survey of Venusian impact craters. Icarus 111:387–416. doi:10.1006/icar.1994.1152CrossRefGoogle Scholar
  13. Izenberg NR, Arvidson RE, Phillips RJ (1994) Impact crater degradation on Venusian plains. Geophys Res Lett 21:289–292. doi:10.1029/94GL00080CrossRefGoogle Scholar
  14. Keddie ST, Head JW (1995) Formation and evolution of volcanic edifices on the Dione Regio rise, Venus. J Geophys Res 100:11729–11754. doi:10.1029/95JE00822CrossRefGoogle Scholar
  15. McHone JF, Greeley R, Williams KK, Blumberg DG, Kuzmin RO (2002) Space shuttle observations of terrestrial impact structures using SIR-C and X-SAR radars. Meteorit Planet Sci 37(3):407–420. doi:10.1111/j.1945-5100.2002.tb00824.xCrossRefGoogle Scholar
  16. McKinnon WB, Zahnle KJ, Ivanov BA, Meloshm HJ (1997) Cratering on Venus: models and observations. In: Bougher SW et al (eds) Venus II: geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 969–1014Google Scholar
  17. Phillips RJ, Raubertas RF, Arvidson RE, Sarkar IC, Herrick RR, Izenberg N, Grimm RE (1992) Impact craters and Venus resurfacing history. J Geophys Res 97:15923–15948. doi:10.1029/92JE01696CrossRefGoogle Scholar
  18. Schaber GG, Strom RG, Moore HJ, Soderblom LA, Kirk RL et al (1992) Geology and distribution of impact craters on Venus: what are they telling us? J Geophys Res 97:13257–13301. doi:10.1029/92JE01246CrossRefGoogle Scholar
  19. Schaller CJ, Melosh HJ (1998) Venusian ejecta parabolas: comparing theory with observations. Icarus 131:123–137. doi:10.1006/icar.1997.5855CrossRefGoogle Scholar
  20. Takata T, Ahrens TJ, Phillips RJ (1995) Atmospheric effects on cratering on Venus. J Geophys Res 100(E11):23329–23348. doi:10.1029/95JE02641CrossRefGoogle Scholar
  21. Vervack RJ Jr, Melosh HJ (1992) Wind interaction with falling ejecta: origin of the parabolic features on Venus. Geophys Res Lett 19:525–528. doi:10.1029/91GL02812CrossRefGoogle Scholar
  22. Weitz CM, Plaut JJ, Greeley R, Saunders RS (1994) Dunes and microdunes on Venus: why were so few found in the Magellan data? Icarus 112:282–295. doi:10.1006/icar.1994.1181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of California – Santa CruzSanta CruzUSA