Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Radar-Dark Parabola

  • Nataliya BondarenkoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_449


A type of  crater-associated radar-dark diffuse feature on Venus having a parabolic shape.


Radar-dark parabolas (DP) are crater-associated radar-dark diffuse features on Venus interpreted as mantles of fine-grained material covering the local substrate. Dark parabolas envelop the impact crater near its “focus.” Dark parabolas cover large areas, up to ~2,630,000 km2 (crater Greenaway); the lengths of observed DPs vary between ~11 and ~50 crater diameters (Campbell et al. 1992). Each dark parabola is oriented along an east–west axis with the apex facing the east and the open end facing the west. The majority of radar-dark parabolas on Venus are characterized by a smooth surface at scales of 1–100 m; some parabolas show asymmetric small-scale relief (like microdune fields) formed as a result of wind action (Bondarenko and Head 2009).


The strong east–west directionality of DPs suggests a correlation with the high-altitude zonal winds on Venus, which blow...

This is a preview of subscription content, log in to check access.


  1. Arvidson RE, Baker VR, Elachi C, Saunders RS, Wood JA (1991) Magellan: initial analysis of Venus surface modification. Science 252:270–276. doi:10.1029/92JE01384CrossRefGoogle Scholar
  2. Basilevsky AT, Head JW (1995) Regional and global stratigraphy of Venus: a preliminary assessment and implications for the geological history of Venus. Planet Space Sci 43(12):1523–1553. doi:10.1016/0032-0633(95)00070-4CrossRefGoogle Scholar
  3. Basilevsky AT, Head JW (2002) Venus: analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J Geophys Res 107(E8):5061. doi:10.1029/2001JE001584CrossRefGoogle Scholar
  4. Basilevsky AT, Head JW, Setyaeva IV (2003) Venus: estimation of age of impact craters on the basis of degree of preservation of associated radar-dark deposits. Geophys Res Lett 30(18):1950. doi:10.1029/2003GL017504CrossRefGoogle Scholar
  5. Basilevsky AT, Head JW, Abdrakhimov AM (2004) Impact crater air fall deposits on the surface of Venus: areal distribution, estimated thickness, recognition in surface panoramas, and implications for provenance of sampled surface materials. J Geophys Res 109, E12003. doi:10.1029/2004JE002307CrossRefGoogle Scholar
  6. Basilevsky AT, Head JW (2006) Impact craters on regional plains on Venus: Age relations with wrinkle ridges and implications for the geological evolution of Venus. J Geophys Res 111( E3):E03006. doi:10.1029/2005JE002473Google Scholar
  7. Bondarenko NV and Head JW (2004) Radar-dark impact crater-related parabolas on Venus: Characterization of deposits with Magellan emissivity data. J Geophys Res 109(E9):E09004. doi:10.1029/2004JE002256Google Scholar
  8. Bondarenko NV, Head JW (2009) Crater-associated dark diffuse features on Venus: properties of surficial deposits and their evolution. J Geophys Res 114:E03004. doi:10.1029/2008JE003163Google Scholar
  9. Campbell DB, Stacy NJS, Newman WI, Arvidson RE, Jones EM, Musser GS, Roper AY, Schaller C (1992) Magellan observations of extended impact crater related features on the surface of Venus. J Geophys Res 97:16249–16277CrossRefGoogle Scholar
  10. Carter LM, Campbell DB, Campbell BA (2004) Impact crater related surficial deposits on Venus: multipolarization radar observations with Arecibo. J Geophys Res 109, E06009. doi:10.1029/2003JE002227Google Scholar
  11. Izenberg NR, Arvidson RE, Phillips RJ (1994) Impact crater degradation on Venusian plains. Geophys Res Lett 21:289–292CrossRefGoogle Scholar
  12. McHone JF, Greeley R, Williams KK, Blumberg DG, Kuzmin RO (2002) Space shuttle observations of terrestrial impact structures using SIR-C and X-SAR radars. Meteorit Planet Sci 37(3):407–420. doi:10.1111/j.1945-5100.2002.tb00824.xCrossRefGoogle Scholar
  13. Schaller CJ, Melosh HJ (1998) Venusian ejecta parabolas: comparing theory with observations. Icarus 131:123–137. doi:10.1006/icar.1997.5855CrossRefGoogle Scholar
  14. Vervack RJ Jr, Melosh HJ (1992) Wind interaction with falling ejecta: origin of the parabolic features on Venus. Geophys Res Lett 19:525–528. doi:10.1029/91GL02812CrossRefGoogle Scholar
  15. Weitz CM, Plaut JJ, Greeley R, Saunders RS (1994) Dunes and microdunes on Venus: why were so few found in the Magellan data? Icarus 112:282–295. doi:10.1006/icar.1994.1181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of California – Santa CruzSanta CruzUSA