Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Corona (Venus)

  • Ákos Kereszturi
  • Trudi Hoogenboom Hagen
  • Leslie F. BleamasterIII
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_439


Quasi-circular volcano-tectonic/tectonomagmatic structure on Venus with concentric ridge and trough along its perimeter.


See also Ovoid (obsolete).




Circular to ovoid structure on the surface of Venus consisting of partially to fully complete concentric tectonic structures that are usually aligned with a raised rim or trough.

Coronae consist of interior (dome, plateau, depression, or no relief) and exterior (rim or trough) elements (Smrekar and Stofan 1997). Their central region is usually higher than the level of the surrounding plain, but often lower than their rim; the entire structure is surrounded by a circular moat-like depression. Coronae may exhibit radial fractures (  corona-nova) and are frequently associated with lava flows and volcanic domes and shields (Dombard et al. 2007) (Figs. 1 and 2). About 20 % of coronae are associated with distinct positive gravity anomalies (Johnson and Richards 2003).
This is a preview of subscription content, log in to check access.


  1. Aittola M, Kostama V-P (2002) Chronology of the formation process of Venusian novae and the associated coronae. J Geophys Res 107(E11):5112. doi:10.1029/2001JE001528CrossRefGoogle Scholar
  2. Arvidson RE, Greely R, Malin MC, Saunders RS, Izenberg N, Plaut JJ, Stofan ER, Shepard MK (1992) Surface modifications of Venus as inferred from Magellan observations of plains. J Geophys Res 97:13303–13318CrossRefGoogle Scholar
  3. Baer G, Schubert G, Bindschadler DL, Stofan ER (1994) Spatial and temporal relations between coronae and extensional belts, northern Lada Terra, Venus. J Geophys Res 99(E4):8355–8369CrossRefGoogle Scholar
  4. Barsukov VL et al (1986) The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. J Geophys Res 91(B4):D378–D398. doi:10.1029/JB091iB04p0D378CrossRefGoogle Scholar
  5. Basilevsky AT, Head JW (1997) Onset time and duration of Corona activity on Venus: stratigraphy and history from photogeologic study of stereo images. Earth Moon Planets 76(1/2):67–115CrossRefGoogle Scholar
  6. Basilevsky AT, McGill GE (2007) Surface evolution of Venus. In: Esposito LW, Stofan ER, Cravens TE (eds) Exploring Venus as a terrestrial Planet, vol 176, Geophysical monograph series. American Geophysical Union, Washington, DC, pp 23–43CrossRefGoogle Scholar
  7. Billings MP (1962) Structural geology, 3rd edn. Prentice Hall, Eaglewood CliffsGoogle Scholar
  8. Bleamaster LF, Hansen VL (2004) Effects of crustal heterogeneity on the morphology of chasmata, Venus. J Geophys Res 109, E02004. doi:10.1029/2003JE002193Google Scholar
  9. Copp DL, Guest JE, Stofan ER (1998) New insights into coronae evolution: mapping on Venus. J Geophys Res 103(E8):19401–19418CrossRefGoogle Scholar
  10. Crumpler LS, Aubele JC, Senske DA, Keddie ST, Magee KP, Head JW (1997) Volcanoes and centers of volcanism on Venus. In: Bougher SW et al (eds) Venus II: geology, geophysics atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 697–756Google Scholar
  11. Dombard AJ, Johnson CL, Richards MA, Solomon SC (2007) A magmatic loading model for coronae on Venus. J Geophys Res 112, E04006. doi:10.1029/2006JE002731Google Scholar
  12. Guseva EN (2009) Spacing of structures in the Rift- and groove belt-related coronae on Venus. 40th Lunar Planet Sci Conf, abstract #1152, HoustonGoogle Scholar
  13. Hansen VL (2003) Venus diapirs: thermal or compositional? Geol Soc Am Bull 115(9):1040–1052CrossRefGoogle Scholar
  14. Hansen VL (2007) LIPs on Venus. Chem Geol 241:354–374CrossRefGoogle Scholar
  15. Hansen VL, Olive A (2010) Artemis, Venus: the largest tectonomagmatic feature in the solar system? Geology 38:467–470CrossRefGoogle Scholar
  16. Herrick RR, Sharpton VL, Malin MC, Lyons SN, Feely K (1997) Morphology and morphometry of impact craters. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 1015–1046Google Scholar
  17. Hoogenboom T, Houseman GA (2006) Rayleigh-Taylor instability as a mechanism for coronae formation on Venus. Icarus 180(2):292–307. doi:10.1016/j.icarus.2005.11.001CrossRefGoogle Scholar
  18. Johnson CL, Richards MA (2003) A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. J Geophys Res Planets 108(E6):12–1. doi:10.1029/2002JE001962, CiteID 5058CrossRefGoogle Scholar
  19. Kostama V-P, Aittola M (2002) Distribution and classification of volcanotectonic features of Venus. In: Proceedings of the 36th Vernadsky Brown Microsymposium, Moscow, MS#051Google Scholar
  20. Krassilnikov AS, Kostama V-P, Aittola M, Guseva EN, Cherkashina OS (2012) Relationship of coronae, regional plains and rift zones on Venus. Planet Space Sci 68(1):56–75CrossRefGoogle Scholar
  21. Lopez I, Marguez A, Oyarzun R (1999) Are coronae restricted to Venus? Earth Moon Planet 77:125–137CrossRefGoogle Scholar
  22. Martin P, Stofan ER, Glaze LS, Smrekar S (2007) Coronae of Parga Chasma, Venus. J Geophys Res 112(E4):130–146, CiteID E04S03Google Scholar
  23. Masursky H (1987) Geological evolution of coronae (complex circular features) on Venus (abstract). Lunar Planet Sci Conf XVIII:598–599, HoustonGoogle Scholar
  24. Namiki N, Solomon SC (1994) Impact crater densities on volcanoes and coronae on Venus: implications for volcanic resurfacing. Science 265(5174):929–933CrossRefGoogle Scholar
  25. Nikolaeva ON, Ronca LB, Basilevsky AT (1986) Circular features on the plains of Venus as an evidence of its geologic history. Geochimia 5:279–589Google Scholar
  26. Pronin AA, Stofan ER (1990) Coronae on Venus: morphology, classification, and distribution. Icarus 87(2):452–474CrossRefGoogle Scholar
  27. Smrekar SE, Stofan ER (1997) Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277(5330):1289–1294. doi:10.1126/science.277.5330.1289CrossRefGoogle Scholar
  28. Smrekar SE, Stofan ER (1999) Origin of Corona-dominated topographic rises on Venus. Icarus 139:100–115CrossRefGoogle Scholar
  29. Smrekar SE, Stofan ER (2003) Effects of lithospheric properties on the formation of type 2 coronae on Venus. J Geophys Res 108(E8):10–1. doi:10.1029/2002JE001930, CiteID 5091Google Scholar
  30. Squyres SW, Janes DM, Baer G, Bindschadler DL, Schubert G, Sharpton VL, Stofan ER (1992) The morphology and evolution of coronae on Venus. J Geophys Res 97(E8):13611–13634CrossRefGoogle Scholar
  31. Stofan ER, Head JW (1990) Coronae of mnemosyne Regio: morphology and origin. Icarus 83:216–243CrossRefGoogle Scholar
  32. Stofan ER, Head JW, Parmentier EM (1987) Corona structures on Venus: models of origin. Lunar Planet Sci Conf XVIII:954–955, HoustonGoogle Scholar
  33. Stofan ER, Sharpton VL, Schubert G, Bindschadler DL, Janes DM, Squyres SW (1991) Origin and evolution of coronae on Venus: an overview from Magellan. Lunar Planet Sci Conf XXII:1335–1336, HoustonGoogle Scholar
  34. Stofan ER, Sharpton VL, Schubert G, Baer GD, Bindschadler DL, Janes DM, Squyres SW (1992) Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J Geophys Res 97:13347–13378CrossRefGoogle Scholar
  35. Stofan ER, Smrekar SE, Tapper SW, Guest JE, Grindrod PM (2001) Preliminary analysis of an expanded corona database for Venus. Geophys Res Lett 28(22):4267–4270. doi:10.1029/2001GL013307. Database is available at ftp://pdsimage2.wr.usgs.gov/pub/pigpen/venus/Coronae/CrossRefGoogle Scholar
  36. Stofan ER, Glaze LS, Smrekar SE, Baloga SM (2003) A statistical analysis of corona topography: new insights into corona formation and evolution. Lunar Planet Sci Conf XXXIV, abstract #1594, HoustonGoogle Scholar
  37. Tackley PJ, Stevenson DJ (1991) The production of small Venusian coronae by Rayleigh–Taylor instabilities in the uppermost mantle. Eos Trans Am Geophys Union 72:287Google Scholar
  38. Tackley PJ, Stevenson DJ, Scott DR (1992) Volcanism by melt driven Rayleigh–Taylor instabilities and possible consequences of melting for admittance ratios on Venus. LPI Contribution 789Google Scholar
  39. Tapper SW, Stofan ER, Guest JE (1998) Preliminary analysis of an expanded corona Database. Lunar Planet Sci XXIXC, abstract #1104, HoustonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ákos Kereszturi
    • 1
  • Trudi Hoogenboom Hagen
    • 2
  • Leslie F. BleamasterIII
    • 3
    • 4
  • Henrik Hargitai
    • 5
  1. 1.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  2. 2.Lunar and Planetary InstituteHoustonUSA
  3. 3.Center for the Sciences and InnovationTrinity UniversitySan AntonioUSA
  4. 4.Planetary Science InstituteTucsonUSA
  5. 5.NASA Ames Research Center/NPPMoffett FieldUSA