Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Combination Ejecta

  • Nadine G. Barlow
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_438


Impact crater ejecta pattern which displays a layered ejecta morphology close to the crater rim and secondary crater chains beyond the edge of the layered ejecta deposit.


A type of  ejecta, containing both  layered ejecta and  radial ejecta.


Diverse ejecta; MLERSRd;  Radial-lobate ejecta; SLERSRd;  Transitional ejecta


The combination ejecta pattern displays components of both layered (fluidized) and radial (dry) ejecta patterns. There is a layered ejected blanket close to the crater rim, beyond which chains of secondary craters can be seen. The secondary craters appear to extend from beneath the outer edge of the layered ejecta deposit and thus appear to be formed prior to the emplacement of the layered ejecta deposit (Barlow et al. 2000). The layered ejecta part of the combination ejecta pattern is typically either a  single layer ejecta or  multiple layer ejecta morphology. Secondary craters extending beyond the outer layer of the  double...

This is a preview of subscription content, log in to check access.


  1. Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res 110. doi:10.1029/2005JE002453Google Scholar
  2. Barlow NG (2005) A review of Martian impact crater ejecta structures and their implications for target properties. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America special paper 384. Geological Society of America, Boulder, pp 433–442CrossRefGoogle Scholar
  3. Barlow NG (2006) Martian impact craters and their implications for target characteristics. In: Proceedings of the first international conference on impact cratering in the solar system, European Space Agency Special Publication, Noordwijk, The Netherlands, SP-612Google Scholar
  4. Barlow NG, Bradley TL (1990) Martian impact craters: correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 87:156–179CrossRefGoogle Scholar
  5. Barlow NG, Boyce JM, Costard FM, Craddock RA, Garvin JB, Sakimoto SEH, Kuzmin RO, Roddy DJ, Soderblom LA (2000) Standardizing the nomenclature of Martian impact crater ejecta morphologies. J Geophys Res 105:26,733–26,738CrossRefGoogle Scholar
  6. Beaty D, 26 colleagues of the MEPAG Special Regions–Science Analysis Group (2006) Findings of the Mars special regions science analysis group. Astrobiology 6:677–732CrossRefGoogle Scholar
  7. Boyce JM, Mouginis-Mark PJ (2006) Martian craters viewed by the thermal emission imaging system instrument: double-layered ejecta craters. J Geophys Res 111. doi:10.1029/2005JE002638Google Scholar
  8. Cockell CS, Barlow NG (2002) Impact excavation and the search for subsurface life on Mars. Icarus 155:340–349CrossRefGoogle Scholar
  9. Hartmann WK, Barlow NG (2006) Nature of the Martian uplands: effect on Martian meteorite age distribution and secondary cratering. Meteorit Planet Sci 41:1453–1467CrossRefGoogle Scholar
  10. McEwen AS, Preblich BS, Turtle EP, Artemieva NA, Golombek MP, Hurst M, Kirk RL, Burr DM, Christensen PR (2005) The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176:351–381CrossRefGoogle Scholar
  11. Mouginis-Mark P (1979) Martian fluidized crater morphology: variations with crater size, latitude, altitude, and target material. J Geophys Res 84:8011–8022CrossRefGoogle Scholar
  12. Mouginis-Mark PJ, Boyce JM (2012) Tooting crater: geology and geomorphology of the archetytpe large, fresh, impact crater on Mars. Chemie der Erde 72:1–23CrossRefGoogle Scholar
  13. Preblich BS, McEwen AS, Studer DM (2007) Mapping rays and secondary craters from the Martian crater Zunil. J Geophys Res 112:E05006. doi:10.1029/2006JE002817Google Scholar
  14. Tornabene LL, Moersch JE, McSween HY, McEwen AS, Piatek JL, Milam KA, Christensen PR (2006) Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible Martian meteorite source regions. J Geophys Res 111:E10006. doi:10.1029/2005JE002600CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthern Arizona UniversityFlagstaffUSA