Skip to main content

Channel

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

An open conduit through which some fluid has moved (Sharp and Malin 1975). On Earth, a channel is defined as “the hollow bed where a natural body of surface water flows or may flow. The deepest or central part of the bed of a stream, containing the main current and occupied more or less continuously by water” (NSSH 2008).

Related Terms

Valley, Channel-belt deposit, Macrochannel, Inner channel

Description and Terminology

Channel

On Earth, the term “channel” refers to the bed and bank of a stream, usually lying at the bottom of a gully, canyon, or valley (Sharp and Malin 1975), but it is also applied to lava channels and submarine channels.

On Mars, it has come to mean any elongate narrow depression of linear, curvilinear, sinuous, or irregular configuration, created by external processes, typically erosion (Sharp and Malin 1975). However, the application of the term “channel” to any linear negative landforms of Mars is inappropriate in terms of strict terminology (Sharp and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnott RWC (2007) Stratal architecture and origin of lateral accretion deposits (LADs) and conterminuous inner-bank levee deposits in a base-of-slope sinuous channel, lower Isaac Formation (Neoproterozoic), East-Central British Columbia, Canada. Mar Petrol Geol 24:515–528

    Article  Google Scholar 

  • Bennet MR, Glasser NF (2009) Glacial geology. Ice sheets and landforms, 2nd edn. Wiley, Chichester/New York

    Google Scholar 

  • Brennand TA (2000) Deglacial meltwater drainage and glaciodynamics: inferences from Laurentide eskers. Can Geomorphol 32:263–293

    Article  Google Scholar 

  • Bridge JS, Demicco R (2012) Rivers, alluvial plains and fans. In: Earth surface processes, landforms and sediment deposits. Cambridge University Press, New York, pp 365–461

    Google Scholar 

  • Burr DM, Perron JT, Lamb MP, Irwin III RP, Collins GC, Howard AD, Sklar LS, Moore JM, Ádámkovics M, Baker VR, Drummond SA, Black BA (2012) Fluvial features on Titan: insights from morphology and modeling. GSA Bull. doi:10.1130/B30612.1, 7

    Google Scholar 

  • Callow RHT, Kneller B, Dykstra M, McIlroy D (2014) Physical, biological, geochemic al and sedimentologic al controls on the ichnology of submarine canyon and slope channel systems. Marine and Petroleum Geology 54:144–166

    Article  Google Scholar 

  • Clayton L, Attig JW, Mickelson DM (1999) Tunnel channels formed in Wisconsin during the last glaciation. In: Mickelson DM, Attig JW (eds) Glacial processes past and present, Special paper 337. Geological Society of America, Boulder, pp 69–83

    Google Scholar 

  • Deptuck ME, Steffens GS, Barton M, Pirmez C (2003) Architecture and evolution of upper fan channel-belts on the Niger delta slope and in the Arabian Sea. Mar Petrol Geol 20(6–8):649–676

    Article  Google Scholar 

  • Dominic DF, Ramanathan R, Ritzi R (2010) Aquifer heterogeneity in channel-belt deposits, part 1. Rationale for geometric simulation. GSA Denver annual meeting (31 Oct−3 Nov 2010) paper no. 9–5

    Google Scholar 

  • Erkeling G, Hiesinger H, Reiss D, Hielscher FJ, Ivanov MA (2011) The stratigraphy of the Amenthes region, Mars: time limits for the formation of fluvial, volcanic and tectonic landforms. Icarus 215:128–152. doi:10.1016/j.icarus.2011.06.041

    Article  Google Scholar 

  • Fryirs KA, Brierley GJ (2013) Geomorphic analysis of river systems: an approach to reading the landscape. Wiley, Chichester

    Google Scholar 

  • Garry WB, Bleacher JE, Warner NA (2008) Emplacement scenarios for Vallis Schröteri, Aristarchus Plateau, the Moon. Lunar Planet Sci Conf XXXIX, abstract #2261, Houston

    Google Scholar 

  • Gouw MJP (2007) Alluvial architecture of fluvio-deltaic successions: a review with special reference to Holocene settings. Netherlands J Geosci 86(3):211–227

    Google Scholar 

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540

    Article  Google Scholar 

  • Hoke MRT, Hynek BM, Tucker GE (2011) Formation timescales of large Martian valley networks. Earth and Planetary Science Letters 312:1–12

    Article  Google Scholar 

  • Hooke RLB (1984) On the role of mechanical energy in maintaining subglacial water conduits at atmospheric pressure. J Glaciol 30:180–187

    Google Scholar 

  • Howard AD (1987) Modelling fluvial systems: rock-, gravel-, and sand-bed channels. In: Richards KS (ed) River Channels: Environment and Process. Blackwell, Oxford, pp 69–94

    Google Scholar 

  • Howard AD, Moore JM, Irwin III RP (2005) An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J Geophys Res 110. doi:10.1029/2005JE002459

    Google Scholar 

  • Irwin RP III, Craddock RA, Howard AD (2005) Interior channels in Martian valley networks: discharge and runoff production. Geology 33(6):489–492. doi:10.1130/G21333.1

    Article  Google Scholar 

  • Janocko M, Nemec W, Henriksen S, Warchol M (2012) The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine Petrol Geol. dx.doi.org/10.1016/j.marpetgeo.2012.06.012

    Google Scholar 

  • Jaumann R, Kirk RL, Lorenz RD, Lopes RMC, Stofan E, Turtle EP, Keller HU, Wood CA, Sotin C, Soderblom LA, Tomasko MG (2009) Geology and surface processes on Titan. In: Brown RH et al (eds) Titan from Cassini-Huygens. Springer, pp 75–140. doi:10.1007/978-1-4020-9215-2_5

    Google Scholar 

  • Jaumann R, Nass A, Tirsch D, Reiss D, Neukum G (2010) The Western Libya Montes valley system on Mars: evidence for episodic and multi-genetic erosion events during the Martian history. Earth Planet Sci Lett 294:272–290. doi:10.1016/j.epsl.2009.09.026

    Article  Google Scholar 

  • Julien PY (2002) River mechanics. Cambridge University Press, Cambridge/New York, p 434

    Book  Google Scholar 

  • Karlstrom L, Gajjar P, Manga M (2013) Meander formation in supraglacial streams, J Geophys Res Earth Surf 118:1897–1907. doi:10.1002/jgrf.20135

    Article  Google Scholar 

  • Kolla V, Posameniter HW, Wood LJ (2007) Deep-water and fluvial sinuous channels – characteristics, similarities and dissimilarities, and modes of formation. Mar Petrol Geol 24:388–405

    Article  Google Scholar 

  • Langhans MH, Jaumann R, Stephan K et al (2012) Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet Space Sci 60:34–51

    Article  Google Scholar 

  • Leverington DW (2006) Volcanic processes as alternative mechanisms of landform development at a candidate crater-lake site near Tyrrhena Patera. Mars J Geophys Res 111. doi:10.1029/2004JE002382

    Google Scholar 

  • Makaske B (2001) Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth-Sci Rev 53:149–196

    Article  Google Scholar 

  • Mars Channel Working Group (1983) Channels and valleys on Mars. Geol Soc Am Bull 94(9):1035–1054. doi:10.1130/0016-7606

    Article  Google Scholar 

  • Metz JM, Grotzinger JP, Mohrig D, Milliken R, Prather B, Pirmez C, McEwen AS, Weitz CM (2009) Sublacustrine depositional fans in southwest Melas Chasma. J Geophys Res 114, E10002. doi:10.1029/2009JE003365

    Article  Google Scholar 

  • NSSH (2008) Glossary of landform and geologic terms. In: Soil survey handbook, Part 629. U.S. Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. Available online at http://soils.usda.gov/technical/handbook/

  • Nye JF (1973) Water at the bed of a glacier. Int Assoc Sci Hydrol 95:189–194

    Google Scholar 

  • Röthlisberger H (1972) Water pressure in intra- and subglacial channels. J Glaciol 11:177–203

    Google Scholar 

  • Sharp RP, Malin MC (1975) Channels on Mars. Geol Soc Am Bull 86:593–609

    Article  Google Scholar 

  • Stanton TP, Shaw WJ, Truffer M, Corr HFJ, Peters LE, Riverman KL, Bindschadler R, Holland DM, Anandakrishnan S (2013) Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science 341(6151):1236–1239

    Article  Google Scholar 

  • Williams RME, Irwin RP, Zimbelman JR (2009) Evaluation of paleohydrologic models for terrestrial inverted channels: implications for application to Martian sinuous ridges. Geomorphology 107:300–315

    Article  Google Scholar 

  • Wilson L, Head JW (2004) Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel. Mars Geophys Res Lett 31. doi:10.1029/2004GL020322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Erkeling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Erkeling, G., Stouthamer, E., Hargitai, H., Fryirs, K. (2015). Channel. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_42

Download citation

Publish with us

Policies and ethics