Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Cinder Cone

  • Emőke Fodor
  • Petr Brož
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_406


Small truncated cone-shaped volcanic hill (Macdonald 1972) composed of unpaved cinder (scoria) and other pyroclastic deposits accumulated around an approximately circular vent or fissure vent that produces an elongated cone.


Scoria cone, Tephra cone


Earth science literature today prefers the term scoria cone, whereas in planetary science the term cinder cone is more commonly used.


Early-formed scoria cones are usually conical or horseshoe-shaped. They are commonly deposited on pyroclastic fallout deposits from magma degassing eruptions or by magmatic eruptions that often anticipate the building of cinder cone, constructed around the active vent and associated lava flow, enabling effusion and explosion occurring from the same vent. When protracted activity accumulates scoria around the vent, completing the cone, lava flows can emanate from lateral vents at the base of the cone (Pioli et al. 2009; Wood 1980a).


On Earth, on average their...

This is a preview of subscription content, log in to check access.


  1. Bleacher JE, Greeley R, Williams DA, Cave SR, Neukum G (2007) Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J Geophys Res 112:E09005. doi:10.1029/2006JE002873Google Scholar
  2. Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218:88–99CrossRefGoogle Scholar
  3. Fornaciai A, Favalli M, Karátson D, Tarquini S, Boschi E (2012) Morphometry of scoria cones, and their relation to geodynamic setting: a DEM-based analysis. J Volcanol Geotherm Res 217–218:56–72CrossRefGoogle Scholar
  4. Ghent RR, Anderson SW, Pithawala TM (2012) The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus 217:169–183CrossRefGoogle Scholar
  5. Gregg TKP, Shockey K (2008) Distribution of small volcanic constructs on Earth, Mars, Venus and the Moon: comparisons and contrasts. Geol Soc Am Abstr Program 40(6):114Google Scholar
  6. Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geotherm Res 185:69–95CrossRefGoogle Scholar
  7. Head JW, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271CrossRefGoogle Scholar
  8. Keszthelyi L et al (2008) High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter primary science phase. J Geophys Res 113:E04005. doi:10.1029/2007JE002968Google Scholar
  9. Kleinhans MG et al (2011) Static and dynamic angles of repose in loose granular materials under reduced gravity. J Geophys Res 116:E11004. doi:10.1029/2011JE003865CrossRefGoogle Scholar
  10. Lanz JK, Wagner R, Wolf U, Kröchert J, Neukum G (2010) Rift zone volcanism and associated cinder cone field in Utopia Planitia, Mars. J Geophys Res 115:E12019. doi:10.1029/2010JE003578CrossRefGoogle Scholar
  11. Lawrence SJ, Stopar JD, Hawke BR, Jolliff BL, Robinson MS, Spudis PD, Giguerre TA (2012) Characterizing volcanic cones in the Marius hills region. 43rd Lunar Planet Sci Conf, abstract #2432, HoustonGoogle Scholar
  12. Lawrence SJ et al (2013) LRO observations of morphology and surface roughness of volcanic cones and lobate lava flows in the Marius Hills. J Geophys Res Planets 118:615–634. doi:10.1002/jgre.20060CrossRefGoogle Scholar
  13. Macdonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, p 510Google Scholar
  14. McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79:3257–3272CrossRefGoogle Scholar
  15. Meresse S, Costard F, Mangold N, Masson P, Neukum G, The HRSC Co-I Team (2008) Formation and evolution of the chaotic terrains by subsidence and magmatism: hydraotes Chaos, Mars. Icarus 194:487–500CrossRefGoogle Scholar
  16. Plescia JB (1980) Cinder cones of Isidis and Elysium. NASA Tech. Memo 82385, 263–265Google Scholar
  17. Pioli L, Azzopardi BJ, Cashman KV (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. J Volcanol Geotherm Res 186:407–415CrossRefGoogle Scholar
  18. Porter SC (1972) Distribution, morphology, and size frequency of cinder cones on Mauna Kea volcano, Hawaii. Geol Soc Am Bull 83:3607–3612CrossRefGoogle Scholar
  19. Settle M (1979) The structure and emplacement of cinder cone fields. Am J Sci 279:1089–1107CrossRefGoogle Scholar
  20. Valentine GA, Krier D, Perry FV, Heiken G (2005) Scoria cone construction mechanisms, Lathrop Wells volcano, southern Nevada, USA. Geology 33(8):629–632. doi:10.1130/G21459.1CrossRefGoogle Scholar
  21. Wood CA (1979) Cinder cones on Earth, Moon and Mars. Lunar Planet Sci X:1370–1371, HoustonGoogle Scholar
  22. Wood CA (1979b) Monogenetic volcanoes of the terrestrial planets. Proc Lunar Planet Sci Conf 10:2815–2840, HoustonGoogle Scholar
  23. Wood CA (1980a) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413CrossRefGoogle Scholar
  24. Wood CA (1980b) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physical GeographyInstitute of Geography and Earth Sciences, Eötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Geophysics, Academy of Sciences of the Czech RepublicPragueCzech Republic