Skip to main content

Rock Glacier and Debris-Covered Glacier

  • Reference work entry
  • First Online:

Note

There is no consensus among different schools on what the definition should be based on: morphology or origin.

Category

A type of periglacial, glacial, or permafrost landform.

Morphological Definition and Terminology

  1. (1)

    A rock glacier is “a slow-moving accumulation of (angular) rock debris, usually with a distinct ridge/furrow pattern and steep front and side slopes, whose length is generally greater than its width (tongue-shaped) existing on a mountain valley floor” (van Everdingen 1998).

  2. (2)

    A debris-covered glacier is a glacier, partly or wholly covered by weathered debris in its terminal (snout) area. The term may refer to a long, active glacier or to an area of ice slowly down-wasting under a debris cover. These may be sometimes associated with rock glaciers.

Morphological definition of rock glaciers is preferred by supporters of glacial formation model (e.g., Potter 1972) because the “permafrost model” assumes that the presence of permafrost, not explicit in imagery,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackert RP Jr (1998) A rock glacier/debris-covered glacier at Galena Creek, Absaroka Mountains, Wyoming. Geogr Ann 80A:267–276

    Article  Google Scholar 

  • Arfstrom J, Hartmann WK (2005) Martian flow features, moraine-like ridges, and gullies: terrestrial analogs and interrelationships. Icarus 174(2):321–335

    Article  Google Scholar 

  • Azizi F, Whalley WB (1995) Finite element analysis of the creep of debris containing thin ice bodies. In: Proceedings 5th international offshore and polar engineering conference, The Hague, vol 2. International Society of Offshore and Polar Engineers, Golden pp 336–341

    Google Scholar 

  • Azizi F, Whalley WB (1996) Numerical modelling of creep behaviour of ice-debris mixtures under variable thermal conditions. In: Proceedings international offshore and polar engineering conference, Los Angeles. International Society of Offshore and Polar Engineers, Golden pp 362–366

    Google Scholar 

  • Azizi F, Jun S, Whalley WB (1994) Finite element modelling of the creep behaviour of a small glacier under low stresses. In: Proceedings 5th international conference of CADMO and ITC. computational mechanics and publications, Southampton/Boston, pp 365–371

    Google Scholar 

  • Baker VR (2001) Water and the Martian landscape. Nature 412:228–236

    Article  Google Scholar 

  • Baker DMH, Head JW, Marchant DR (2010) Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus 207(1):186–209

    Article  Google Scholar 

  • Barsch D (1988) Rockglaciers. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 69–90

    Google Scholar 

  • Barsch D (1992) Permafrost creep and rockglaciers. Permafrost and Periglacial Processes 3(2):175–188

    Article  Google Scholar 

  • Barsch D (1996) Rock glaciers. Springer, Berlin

    Google Scholar 

  • Barsch D, King L (1989) Origin and geoelectrical resistivity of rockglaciers in semi-arid subtropical mountains (Andes of Mendoza, Argentina). Zeitschr Geomorphol NF 33(2):151–163

    Google Scholar 

  • Benn DI, Evans DJA (1998) Glaciers and glaciation. Arnold, London

    Google Scholar 

  • Berthling I (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131:98–106

    Article  Google Scholar 

  • Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (2008) The history of the study of landforms or the development of geomorphology, vol 4. The Geological Society, Bath

    Google Scholar 

  • Capps SR Jr (1910) Rock glaciers in Alaska. J Geol 18:359–375

    Article  Google Scholar 

  • Carr MH (1996) Water on Mars. Cambridge University Press, New York

    Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144(2):479–485

    Article  Google Scholar 

  • Clark DH, Steig EJ, Potter N, Fitzpatrick J, Updike AB, Clark GM (1996) Old ice in rock glaciers may provide long-term climate records. Eos Trans Am Geophys Union 77(23):217, 221–222

    Google Scholar 

  • Colaprete A, Jakosky BM (1998) Ice flow and rock glaciers on Mars. J Geophys Res 103:5897–5909

    Article  Google Scholar 

  • Cross CW, Howe E (1905) Geography and general geology of the quadrangle Silverton folio. US Geol Surv Folio 120:1–25

    Google Scholar 

  • Degenhardt JJ (2009) Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys. Geomorphology 109(3–4):94–107

    Article  Google Scholar 

  • Degenhardt JJ, Giardino JR (2003) Subsurface investigation of a rock glacier using ground-penetrating radar: implications for locating stored water on Mars. J Geophys Res 108(E4):8036. doi:8010.1029/2002JE001888

    Article  Google Scholar 

  • Evin MF, Assier A, Fabre D (1990) Les glaciers rocheux du Marinet (Haute Ubaye, France). Rev Geomorphol Dynam 39:139–155

    Google Scholar 

  • Farbrot H, Etzelmüller B, Guðmundsson Á, Humlum O, Kellerer-Pirklbauer A, Eiken T, Wangensteen B (2007) Rock glaciers and permafrost in Tröllaskagi, northern Iceland. Zeitschr Geomorphol 51(Suppl 2):1–16

    Article  Google Scholar 

  • Gorbunov AP, Titkov SN, Polyakov VG (1992) Dynamics of rock glaciers of the northern Tien Shan and the Djungar Ala Tau, Kazahkstan. Permafr Periglac Process 3:29–39

    Article  Google Scholar 

  • Haeberli W (1979) Holocene push-moraines in alpine permafrost. Geogr Ann 61A:43–48

    Article  Google Scholar 

  • Haeberli W (1985) Creep of mountain permafrost: internal structure and flow of alpine rock glaciers: Mitteilungen der Versuchsanstalt für Wasserbau. Hydrol Glaziol 77:1–142

    Article  Google Scholar 

  • Haeberli W, Hoelzle M, Kääb A, Keller F, Mühll DV, Wagner S (1998) Ten years after drilling through the permafrost of the active rock glacier Murtel, Eastern Swill Alps: answered questions and new perspectives. Permafrost – seventh international conference, Yellowknife, Canada. Collection Nordicana, vol 55. pp 403–410

    Google Scholar 

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Vonder Mühll D (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214

    Article  Google Scholar 

  • Hamilton SJ, Whalley WB (1995) Rock glacier nomenclature: a re-assessment. Geomorphology 14:73–80

    Article  Google Scholar 

  • Harrison S, Whalley B, Anderson E (2008) Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. J Quat Sci 23(3):287–304

    Article  Google Scholar 

  • Hausmann H, Krainer K, Brückl E, Mostler W (2007) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105(2):12–31

    Google Scholar 

  • Hausmann H, Krainer K, Brückl E, Ullrich C (2012) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105(2):12–31

    Google Scholar 

  • Head JW, Marchant DR (2003) Cold-based mountain glaciers on Mars: western Arsia Mons. Geology 31(7):641–644

    Article  Google Scholar 

  • Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, van Gasselt S, the HRSC Co-Investigator Team (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434(7031):346–351

    Article  Google Scholar 

  • Head JW, Marchant DR, Dickson JL, Kress AM, Baker DM (2010) Northern mid-latitude glaciation in the Late Amazonian period of Mars: criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet Sci Lett 294(3–4):306–320

    Article  Google Scholar 

  • Hobbs WH (1911) Characteristics of existing glaciers. Macmillan, New York

    Google Scholar 

  • Holt JW, Safaeinili A, Plaut JJ, Head JW, Phillips RJ, Seu R, Kempf SD, Choudhary P, Young DA, Putzig NE (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322(5905):1235–1238

    Article  Google Scholar 

  • Howe E, Cross CW (1906) Glacial phenomena of the San Juan Mountains Colorado. Bull Geol Soc Am 17:251–274

    Article  Google Scholar 

  • Humlum O (1982) Rock glacier types on Disko, central West Greenland. Geogr Tidsskr 82:59–66

    Article  Google Scholar 

  • Humlum O (1988) Rock glacier appearance level and rock glacier initiation line altitude: methodological approach to the study of rock glaciers. Arctic Alpine Res 20:160–178

    Article  Google Scholar 

  • Johnson PG (1974) Mass movement of ablation complexes and their relationship to rock glaciers. Geogr Ann 56A:101

    Google Scholar 

  • Johnson PG (1984) Rock glacier formation by high-magnitude low-frequency slope processes in the southwest Yukon. Ann Assoc Am Geogr 74(3):408–419

    Article  Google Scholar 

  • Kääb A, Haeberli W, Teysseire P (1996) Entwicklung und Sanierung eines Thermokarstsees am Gruben-Blockgletscher (Wallis). Forsch Geogr Institut Universität Freiburg 8:145–153

    Google Scholar 

  • Kargel JS, Strom RG (1992) Ancient glaciation on Mars. Geology 20:3–7

    Article  Google Scholar 

  • Kaufmann V (2012) The evolution of rock glacier monitoring using terrestrial photogrammetry: the example of Ausseres Hochebenkar rock glacier (Austria). Austrian J Earth Sci 105(2):63–77

    Google Scholar 

  • Kellerer-Pirklbauer A, Wangensteen B, Farbrot H, Etzelmüller B (2008) Relative surface age-dating of rock glacier systems near Hólar in Hjaltadalur, northern Iceland. J Quat Sci 23(2):137–151

    Article  Google Scholar 

  • Konrad SK, Humphrey NF, Steig EJ, Clark DH, Potter NJ, Pfeffer WT (1996) Rock glacier dynamics and paleoclimatic implications. Geology 27:1131–1134

    Article  Google Scholar 

  • Kress AM, Head JW (2008) Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: evidence for subsurface glacial ice. Geophys Res Lett 35(23):L23206

    Article  Google Scholar 

  • Leopold M, Williams MW, Caine M, Völkel J, Deither D (2011) Internal structure of the green lake 5 rock glacier, Colorado Front Range, USA. Permafr Periglac Process 22(2):107–119

    Article  Google Scholar 

  • Levy JS, Head JW, Marchant DR (2007) Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: evidence for phases of glacial modification of the dichotomy boundary. J Geophys Res 112(E8):E08004

    Google Scholar 

  • Luckman BH, Crockett KJ (1978) Distribution and characteristics of rock glaciers in the southern part of Jasper National Park, Alberta. Can J Earth Sci 15(4):540–550. doi:10.1139/e78-060

    Article  Google Scholar 

  • Mahaney WC, Miyamoto H, Dohm JM, Baker VR, Cabrol NA, Grin EA, Berman DC (2007) Rock glaciers on Mars: earth-based clues to Mars’ recent paleoclimatic history. Planet Space Sci 55(1):181–192

    Article  Google Scholar 

  • Marchant DR, Head JW (2003) Tongue-shaped lobes on Mars: morphology, nomenclature, and relation to rock glacier deposits. In: Proceedings sixth international conference on Mars, vol 1, p 3091 http://adsabs.harvard.edu/abs/2003mars.conf.3091M

  • Martin HE, Whalley WB (1987) Rock glaciers. Part 1: rock glacier morphology: classification and distribution. Prog Phys Geogr 11(2):260–282

    Article  Google Scholar 

  • Messerli B, Zurbuchen M (1968) Blockgletscher im Weissmies und Aletsch und ihre photogrammetrische Kartierung. Die Alpen 3:139–152

    Google Scholar 

  • Morgan GA, Head JW III, Marchant DR (2009) Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region Mars: constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 202(1):22–38

    Article  Google Scholar 

  • Musil M, Maurer H, Hollinger K, Green AG (2006) Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes. Geophys Prospect 54:273–285. doi:10.1111/j.1365-2478.2006.00534.x

    Article  Google Scholar 

  • Outcalt SI, Benedict JB (1965) Photo interpretation of two types of rock glaciers in the Colorado Front Range, U.S.A. J Glaciol 5(42):849–856

    Google Scholar 

  • Pearce G, Osinski GR, Soare RJ (2011) Intra-crater glacial processes in central Utopia Planitia, Mars. Icarus 212:86–95

    Article  Google Scholar 

  • Potter N (1972) Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming. Bull Geol Soc Am 83:3025–3058

    Article  Google Scholar 

  • Potter N, Steig EJ, Clark DH, Speece MA, Clark GM, Updike AB (1998) Galena Creek rock glacier revisited – new observations on an old controversy. Geogr Ann 80A:251–265

    Article  Google Scholar 

  • Ribolini A, Guglielmin M, Fabre D, Bodin X, Marchisio M, Sartini S, Spagnolo M, Schoeneich P (2009) The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the Central and Western Alps (Italy–France). Quat Sci Rev 29(3/4):1–15. doi:10.1016/j.quascirev.2009.10.008

    Google Scholar 

  • Rignot E, Hallet B, Fountain A (2002) Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophys Res Lett 29(12):4

    Article  Google Scholar 

  • Rohn O (1900) A reconnaissance of the Chitina River and Skolai Mountains, Alaska. US Geological Survey 21st annual report Pt 2, pp 399–440

    Google Scholar 

  • Sakai A, Takeuchi N, Fujit K, Nakawo M (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. In: Nakawo M, Raymond CF, Fountain A (ed) Debris-covered glaciers, vol 264. The International Association of Hydrological Sciences (IAHS), Oxfordshire pp 119–130

    Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156–159

    Article  Google Scholar 

  • Shean DE, Head JW III, Fastook JL, Marchant DR (2007) Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. J Geophys Res 112(E3):E03004

    Google Scholar 

  • Shroder JF, Bishop MP, Copland L, Sloan VF (2000) Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geogr Ann: Ser A, Phys Geogr 82(1):17–31

    Article  Google Scholar 

  • Shugar DH, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58:1762–1783. doi:10.1111/j.1365-3091.2011.01238.x

    Article  Google Scholar 

  • Sik A (2012) GIS-based visualization of the surface morphology on Mars by satellite imagery integration. Data is beautiful conference, Budapest, pp 16–25

    Google Scholar 

  • Squyres SW, Clifford SM, Kuzmin RO, Zimbelman JR, Costard FM (1992) Ice in the Martian regolith. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. Arizona University Press, Tucson, pp 523–554

    Google Scholar 

  • Sugden DE, Marchant DR, Potter NJ, Souchez RA, Denton GH, Swisher CC, Tison J-L (1995) Preservation of Miocene glacier ice in East Antarctica. Nature 376:412–414

    Article  Google Scholar 

  • van Everdingen RO (1998) Multi-language glossary of permafrost and related ground-ice terms. University of Calgary, Calgary

    Google Scholar 

  • Wahrhaftig C, Cox A (1959) Rock glaciers in the Alaska Range. Geol Soc Am Bull 70:383–436

    Article  Google Scholar 

  • Washburn AL (1979) Geocryology: a survey of periglacial processes and environments. Arnold, London

    Google Scholar 

  • Whalley WB (1979) The relationship of glacier ice and rock glacier at Grubengletscher, Kanton Wallis, Switzerland. Geogr Ann 61A:49–61

    Article  Google Scholar 

  • Whalley WB (1983) Rock glaciers-permafrost features or glacial relics? In: Proceedings fourth international conference on Permafrost, Fairbanks, Alaska. National Academy Press, pp 1396–1401

    Google Scholar 

  • Whalley WB (1992) A rock glacier in south Ellendalen, Lyngen Alps, Troms. Norsk Geogr Tidsskr 46(1):29–30

    Article  Google Scholar 

  • Whalley WB (2009) On the interpretation of discrete debris accumulations associated with glaciers with special reference to the British Isles. In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments, vol 320, Geological society of London special publication. Geological Society, London, pp 85–102

    Google Scholar 

  • Whalley WB (2012) Using discrete debris accumulations to help interpret upland glaciation of the younger dryas in the British Isles, Chapter 1. In: Piacentini T, Miccadei E (eds) Studies on environmental and applied geomorphology. InTech Europe, Rijeka, ISBN 978-953-51-0361-5

    Google Scholar 

  • Whalley WB, Azizi F (1994) Models of flow of rock glaciers: analysis, critique and a possible test. Permafr Periglac Process 5:37–51

    Article  Google Scholar 

  • Whalley WB, Azizi F (2003) Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. J Geophys Res Planets 108(E4):8032. doi:8010.1029/2002JE001864

    Article  Google Scholar 

  • Whalley WB, Martin HE (1992) Rock glaciers: II model and mechanisms. Progress Phys Geogr 16:127–186

    Article  Google Scholar 

  • Whalley WB, Palmer CF (1998) A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. Geogr Ann 80:221–235

    Article  Google Scholar 

  • Whalley WB, Hamilton SJ, Palmer CF, Gordon JE, Martin HE (1995a) The dynamics of rock glaciers: data from Tröllaskagi, north Iceland. In: Slaymaker O (ed) Steepland geomorphology. Wiley, Chichester, pp 129–145

    Google Scholar 

  • Whalley WB, Palmer CF, Hamilton SJ (1995b) An assessment of rock glacier sliding using seventeen years of velocity data: Nautardalur rock glacier, north Iceland. Arctic Alpine Res 27:313–335

    Article  Google Scholar 

  • Wilson P (1990) Morphology, sedimentological characteristics and origin of a fossil rock glacier on Muckish Mountain, County Donegal, Northwest Ireland. Geogr Ann 72A:237–247

    Article  Google Scholar 

  • Wilson P (2004) Relict rock glaciers, slope failure deposits, or polygenetic features? A reassessment of some Donegal debris landforms. Irish Geogr 37:77–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Brian Whalley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Whalley, W.B., Matsuoka, N., Sik, A., Kereszturi, Á., Hargitai, H. (2015). Rock Glacier and Debris-Covered Glacier. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_320

Download citation

Publish with us

Policies and ethics