Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Rock Glacier and Debris-Covered Glacier

  • W. Brian Whalley
  • Norikazu Matsuoka
  • András Sik
  • Ákos Kereszturi
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_320


There is no consensus among different schools on what the definition should be based on: morphology or origin.


A type of  periglacial, glacial, or  permafrost landform.

Morphological Definition and Terminology

  1. (1)

    A rock glacier is “a slow-moving accumulation of (angular) rock debris, usually with a distinct ridge/furrow pattern and steep front and side slopes, whose length is generally greater than its width (tongue-shaped) existing on a mountain valley floor” (van Everdingen 1998).

  2. (2)

    A debris-covered glacier is a glacier, partly or wholly covered by weathered debris in its terminal (snout) area. The term may refer to a long, active glacier or to an area of ice slowly down-wasting under a debris cover. These may be sometimes associated with rock glaciers.


Morphological definition of rock glaciers is preferred by supporters of glacial formation model (e.g., Potter 1972) because the “permafrost model” assumes that the presence of permafrost, not explicit in imagery,...

This is a preview of subscription content, log in to check access.


  1. Ackert RP Jr (1998) A rock glacier/debris-covered glacier at Galena Creek, Absaroka Mountains, Wyoming. Geogr Ann 80A:267–276CrossRefGoogle Scholar
  2. Arfstrom J, Hartmann WK (2005) Martian flow features, moraine-like ridges, and gullies: terrestrial analogs and interrelationships. Icarus 174(2):321–335CrossRefGoogle Scholar
  3. Azizi F, Whalley WB (1995) Finite element analysis of the creep of debris containing thin ice bodies. In: Proceedings 5th international offshore and polar engineering conference, The Hague, vol 2. International Society of Offshore and Polar Engineers, Golden pp 336–341Google Scholar
  4. Azizi F, Whalley WB (1996) Numerical modelling of creep behaviour of ice-debris mixtures under variable thermal conditions. In: Proceedings international offshore and polar engineering conference, Los Angeles. International Society of Offshore and Polar Engineers, Golden pp 362–366Google Scholar
  5. Azizi F, Jun S, Whalley WB (1994) Finite element modelling of the creep behaviour of a small glacier under low stresses. In: Proceedings 5th international conference of CADMO and ITC. computational mechanics and publications, Southampton/Boston, pp 365–371Google Scholar
  6. Baker VR (2001) Water and the Martian landscape. Nature 412:228–236CrossRefGoogle Scholar
  7. Baker DMH, Head JW, Marchant DR (2010) Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus 207(1):186–209CrossRefGoogle Scholar
  8. Barsch D (1988) Rockglaciers. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, Chichester, pp 69–90Google Scholar
  9. Barsch D (1992) Permafrost creep and rockglaciers. Permafrost and Periglacial Processes 3(2):175–188CrossRefGoogle Scholar
  10. Barsch D (1996) Rock glaciers. Springer, BerlinGoogle Scholar
  11. Barsch D, King L (1989) Origin and geoelectrical resistivity of rockglaciers in semi-arid subtropical mountains (Andes of Mendoza, Argentina). Zeitschr Geomorphol NF 33(2):151–163Google Scholar
  12. Benn DI, Evans DJA (1998) Glaciers and glaciation. Arnold, LondonGoogle Scholar
  13. Berthling I (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131:98–106CrossRefGoogle Scholar
  14. Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (2008) The history of the study of landforms or the development of geomorphology, vol 4. The Geological Society, BathGoogle Scholar
  15. Capps SR Jr (1910) Rock glaciers in Alaska. J Geol 18:359–375CrossRefGoogle Scholar
  16. Carr MH (1996) Water on Mars. Cambridge University Press, New YorkGoogle Scholar
  17. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144(2):479–485CrossRefGoogle Scholar
  18. Clark DH, Steig EJ, Potter N, Fitzpatrick J, Updike AB, Clark GM (1996) Old ice in rock glaciers may provide long-term climate records. Eos Trans Am Geophys Union 77(23):217, 221–222Google Scholar
  19. Colaprete A, Jakosky BM (1998) Ice flow and rock glaciers on Mars. J Geophys Res 103:5897–5909CrossRefGoogle Scholar
  20. Cross CW, Howe E (1905) Geography and general geology of the quadrangle Silverton folio. US Geol Surv Folio 120:1–25Google Scholar
  21. Degenhardt JJ (2009) Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys. Geomorphology 109(3–4):94–107CrossRefGoogle Scholar
  22. Degenhardt JJ, Giardino JR (2003) Subsurface investigation of a rock glacier using ground-penetrating radar: implications for locating stored water on Mars. J Geophys Res 108(E4):8036. doi:8010.1029/2002JE001888CrossRefGoogle Scholar
  23. Evin MF, Assier A, Fabre D (1990) Les glaciers rocheux du Marinet (Haute Ubaye, France). Rev Geomorphol Dynam 39:139–155Google Scholar
  24. Farbrot H, Etzelmüller B, Guðmundsson Á, Humlum O, Kellerer-Pirklbauer A, Eiken T, Wangensteen B (2007) Rock glaciers and permafrost in Tröllaskagi, northern Iceland. Zeitschr Geomorphol 51(Suppl 2):1–16CrossRefGoogle Scholar
  25. Gorbunov AP, Titkov SN, Polyakov VG (1992) Dynamics of rock glaciers of the northern Tien Shan and the Djungar Ala Tau, Kazahkstan. Permafr Periglac Process 3:29–39CrossRefGoogle Scholar
  26. Haeberli W (1979) Holocene push-moraines in alpine permafrost. Geogr Ann 61A:43–48CrossRefGoogle Scholar
  27. Haeberli W (1985) Creep of mountain permafrost: internal structure and flow of alpine rock glaciers: Mitteilungen der Versuchsanstalt für Wasserbau. Hydrol Glaziol 77:1–142CrossRefGoogle Scholar
  28. Haeberli W, Hoelzle M, Kääb A, Keller F, Mühll DV, Wagner S (1998) Ten years after drilling through the permafrost of the active rock glacier Murtel, Eastern Swill Alps: answered questions and new perspectives. Permafrost – seventh international conference, Yellowknife, Canada. Collection Nordicana, vol 55. pp 403–410Google Scholar
  29. Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Vonder Mühll D (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214CrossRefGoogle Scholar
  30. Hamilton SJ, Whalley WB (1995) Rock glacier nomenclature: a re-assessment. Geomorphology 14:73–80CrossRefGoogle Scholar
  31. Harrison S, Whalley B, Anderson E (2008) Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. J Quat Sci 23(3):287–304CrossRefGoogle Scholar
  32. Hausmann H, Krainer K, Brückl E, Mostler W (2007) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105(2):12–31Google Scholar
  33. Hausmann H, Krainer K, Brückl E, Ullrich C (2012) Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian J Earth Sci 105(2):12–31Google Scholar
  34. Head JW, Marchant DR (2003) Cold-based mountain glaciers on Mars: western Arsia Mons. Geology 31(7):641–644CrossRefGoogle Scholar
  35. Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, van Gasselt S, the HRSC Co-Investigator Team (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434(7031):346–351CrossRefGoogle Scholar
  36. Head JW, Marchant DR, Dickson JL, Kress AM, Baker DM (2010) Northern mid-latitude glaciation in the Late Amazonian period of Mars: criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth Planet Sci Lett 294(3–4):306–320CrossRefGoogle Scholar
  37. Hobbs WH (1911) Characteristics of existing glaciers. Macmillan, New YorkGoogle Scholar
  38. Holt JW, Safaeinili A, Plaut JJ, Head JW, Phillips RJ, Seu R, Kempf SD, Choudhary P, Young DA, Putzig NE (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322(5905):1235–1238CrossRefGoogle Scholar
  39. Howe E, Cross CW (1906) Glacial phenomena of the San Juan Mountains Colorado. Bull Geol Soc Am 17:251–274CrossRefGoogle Scholar
  40. Humlum O (1982) Rock glacier types on Disko, central West Greenland. Geogr Tidsskr 82:59–66CrossRefGoogle Scholar
  41. Humlum O (1988) Rock glacier appearance level and rock glacier initiation line altitude: methodological approach to the study of rock glaciers. Arctic Alpine Res 20:160–178CrossRefGoogle Scholar
  42. Johnson PG (1974) Mass movement of ablation complexes and their relationship to rock glaciers. Geogr Ann 56A:101Google Scholar
  43. Johnson PG (1984) Rock glacier formation by high-magnitude low-frequency slope processes in the southwest Yukon. Ann Assoc Am Geogr 74(3):408–419CrossRefGoogle Scholar
  44. Kääb A, Haeberli W, Teysseire P (1996) Entwicklung und Sanierung eines Thermokarstsees am Gruben-Blockgletscher (Wallis). Forsch Geogr Institut Universität Freiburg 8:145–153Google Scholar
  45. Kargel JS, Strom RG (1992) Ancient glaciation on Mars. Geology 20:3–7CrossRefGoogle Scholar
  46. Kaufmann V (2012) The evolution of rock glacier monitoring using terrestrial photogrammetry: the example of Ausseres Hochebenkar rock glacier (Austria). Austrian J Earth Sci 105(2):63–77Google Scholar
  47. Kellerer-Pirklbauer A, Wangensteen B, Farbrot H, Etzelmüller B (2008) Relative surface age-dating of rock glacier systems near Hólar in Hjaltadalur, northern Iceland. J Quat Sci 23(2):137–151CrossRefGoogle Scholar
  48. Konrad SK, Humphrey NF, Steig EJ, Clark DH, Potter NJ, Pfeffer WT (1996) Rock glacier dynamics and paleoclimatic implications. Geology 27:1131–1134CrossRefGoogle Scholar
  49. Kress AM, Head JW (2008) Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: evidence for subsurface glacial ice. Geophys Res Lett 35(23):L23206CrossRefGoogle Scholar
  50. Leopold M, Williams MW, Caine M, Völkel J, Deither D (2011) Internal structure of the green lake 5 rock glacier, Colorado Front Range, USA. Permafr Periglac Process 22(2):107–119CrossRefGoogle Scholar
  51. Levy JS, Head JW, Marchant DR (2007) Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: evidence for phases of glacial modification of the dichotomy boundary. J Geophys Res 112(E8):E08004Google Scholar
  52. Luckman BH, Crockett KJ (1978) Distribution and characteristics of rock glaciers in the southern part of Jasper National Park, Alberta. Can J Earth Sci 15(4):540–550. doi:10.1139/e78-060CrossRefGoogle Scholar
  53. Mahaney WC, Miyamoto H, Dohm JM, Baker VR, Cabrol NA, Grin EA, Berman DC (2007) Rock glaciers on Mars: earth-based clues to Mars’ recent paleoclimatic history. Planet Space Sci 55(1):181–192CrossRefGoogle Scholar
  54. Marchant DR, Head JW (2003) Tongue-shaped lobes on Mars: morphology, nomenclature, and relation to rock glacier deposits. In: Proceedings sixth international conference on Mars, vol 1, p 3091 http://adsabs.harvard.edu/abs/2003mars.conf.3091M
  55. Martin HE, Whalley WB (1987) Rock glaciers. Part 1: rock glacier morphology: classification and distribution. Prog Phys Geogr 11(2):260–282CrossRefGoogle Scholar
  56. Messerli B, Zurbuchen M (1968) Blockgletscher im Weissmies und Aletsch und ihre photogrammetrische Kartierung. Die Alpen 3:139–152Google Scholar
  57. Morgan GA, Head JW III, Marchant DR (2009) Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region Mars: constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 202(1):22–38CrossRefGoogle Scholar
  58. Musil M, Maurer H, Hollinger K, Green AG (2006) Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes. Geophys Prospect 54:273–285. doi:10.1111/j.1365-2478.2006.00534.xCrossRefGoogle Scholar
  59. Outcalt SI, Benedict JB (1965) Photo interpretation of two types of rock glaciers in the Colorado Front Range, U.S.A. J Glaciol 5(42):849–856Google Scholar
  60. Pearce G, Osinski GR, Soare RJ (2011) Intra-crater glacial processes in central Utopia Planitia, Mars. Icarus 212:86–95CrossRefGoogle Scholar
  61. Potter N (1972) Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming. Bull Geol Soc Am 83:3025–3058CrossRefGoogle Scholar
  62. Potter N, Steig EJ, Clark DH, Speece MA, Clark GM, Updike AB (1998) Galena Creek rock glacier revisited – new observations on an old controversy. Geogr Ann 80A:251–265CrossRefGoogle Scholar
  63. Ribolini A, Guglielmin M, Fabre D, Bodin X, Marchisio M, Sartini S, Spagnolo M, Schoeneich P (2009) The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the Central and Western Alps (Italy–France). Quat Sci Rev 29(3/4):1–15. doi:10.1016/j.quascirev.2009.10.008Google Scholar
  64. Rignot E, Hallet B, Fountain A (2002) Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophys Res Lett 29(12):4CrossRefGoogle Scholar
  65. Rohn O (1900) A reconnaissance of the Chitina River and Skolai Mountains, Alaska. US Geological Survey 21st annual report Pt 2, pp 399–440Google Scholar
  66. Sakai A, Takeuchi N, Fujit K, Nakawo M (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. In: Nakawo M, Raymond CF, Fountain A (ed) Debris-covered glaciers, vol 264. The International Association of Hydrological Sciences (IAHS), Oxfordshire pp 119–130Google Scholar
  67. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156–159CrossRefGoogle Scholar
  68. Shean DE, Head JW III, Fastook JL, Marchant DR (2007) Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. J Geophys Res 112(E3):E03004Google Scholar
  69. Shroder JF, Bishop MP, Copland L, Sloan VF (2000) Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geogr Ann: Ser A, Phys Geogr 82(1):17–31CrossRefGoogle Scholar
  70. Shugar DH, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58:1762–1783. doi:10.1111/j.1365-3091.2011.01238.xCrossRefGoogle Scholar
  71. Sik A (2012) GIS-based visualization of the surface morphology on Mars by satellite imagery integration. Data is beautiful conference, Budapest, pp 16–25Google Scholar
  72. Squyres SW, Clifford SM, Kuzmin RO, Zimbelman JR, Costard FM (1992) Ice in the Martian regolith. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. Arizona University Press, Tucson, pp 523–554Google Scholar
  73. Sugden DE, Marchant DR, Potter NJ, Souchez RA, Denton GH, Swisher CC, Tison J-L (1995) Preservation of Miocene glacier ice in East Antarctica. Nature 376:412–414CrossRefGoogle Scholar
  74. van Everdingen RO (1998) Multi-language glossary of permafrost and related ground-ice terms. University of Calgary, CalgaryGoogle Scholar
  75. Wahrhaftig C, Cox A (1959) Rock glaciers in the Alaska Range. Geol Soc Am Bull 70:383–436CrossRefGoogle Scholar
  76. Washburn AL (1979) Geocryology: a survey of periglacial processes and environments. Arnold, LondonGoogle Scholar
  77. Whalley WB (1979) The relationship of glacier ice and rock glacier at Grubengletscher, Kanton Wallis, Switzerland. Geogr Ann 61A:49–61CrossRefGoogle Scholar
  78. Whalley WB (1983) Rock glaciers-permafrost features or glacial relics? In: Proceedings fourth international conference on Permafrost, Fairbanks, Alaska. National Academy Press, pp 1396–1401Google Scholar
  79. Whalley WB (1992) A rock glacier in south Ellendalen, Lyngen Alps, Troms. Norsk Geogr Tidsskr 46(1):29–30CrossRefGoogle Scholar
  80. Whalley WB (2009) On the interpretation of discrete debris accumulations associated with glaciers with special reference to the British Isles. In: Knight J, Harrison S (eds) Periglacial and paraglacial processes and environments, vol 320, Geological society of London special publication. Geological Society, London, pp 85–102Google Scholar
  81. Whalley WB (2012) Using discrete debris accumulations to help interpret upland glaciation of the younger dryas in the British Isles, Chapter 1. In: Piacentini T, Miccadei E (eds) Studies on environmental and applied geomorphology. InTech Europe, Rijeka, ISBN 978-953-51-0361-5Google Scholar
  82. Whalley WB, Azizi F (1994) Models of flow of rock glaciers: analysis, critique and a possible test. Permafr Periglac Process 5:37–51CrossRefGoogle Scholar
  83. Whalley WB, Azizi F (2003) Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. J Geophys Res Planets 108(E4):8032. doi:8010.1029/2002JE001864CrossRefGoogle Scholar
  84. Whalley WB, Martin HE (1992) Rock glaciers: II model and mechanisms. Progress Phys Geogr 16:127–186CrossRefGoogle Scholar
  85. Whalley WB, Palmer CF (1998) A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. Geogr Ann 80:221–235CrossRefGoogle Scholar
  86. Whalley WB, Hamilton SJ, Palmer CF, Gordon JE, Martin HE (1995a) The dynamics of rock glaciers: data from Tröllaskagi, north Iceland. In: Slaymaker O (ed) Steepland geomorphology. Wiley, Chichester, pp 129–145Google Scholar
  87. Whalley WB, Palmer CF, Hamilton SJ (1995b) An assessment of rock glacier sliding using seventeen years of velocity data: Nautardalur rock glacier, north Iceland. Arctic Alpine Res 27:313–335CrossRefGoogle Scholar
  88. Wilson P (1990) Morphology, sedimentological characteristics and origin of a fossil rock glacier on Muckish Mountain, County Donegal, Northwest Ireland. Geogr Ann 72A:237–247CrossRefGoogle Scholar
  89. Wilson P (2004) Relict rock glaciers, slope failure deposits, or polygenetic features? A reassessment of some Donegal debris landforms. Irish Geogr 37:77–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • W. Brian Whalley
    • 1
  • Norikazu Matsuoka
    • 2
  • András Sik
    • 3
  • Ákos Kereszturi
    • 4
  • Henrik Hargitai
    • 5
  1. 1.School of GeographyQueen’s University BelfastBelfastCanada
  2. 2.Faculty of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
  3. 3.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary
  4. 4.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  5. 5.NASA Ames Research Center/NPPMoffett FieldUSA