Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Reverse Fault

  • Christian Klimczak
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_304

Definition

A fault with an inclined fault surface, along which the hanging wall (rock mass above fault surface) moves upward relative to the foot wall (rock mass below fault surface) (Fig. 1).
This is a preview of subscription content, log in to check access.

References

  1. Binder AB, Gunga HC (1985) Young thrust-fault scarps in the highlands: evidence for an initially totally molten Moon. Icarus 63:421–441CrossRefGoogle Scholar
  2. Byrne PK, Klimczak C, Şengör AMC, Solomon C, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci 7:301–307. doi:10.1038/NGEO2097CrossRefGoogle Scholar
  3. Chicarro AF, Schultz PH, Masson P (1985) Global and regional ridge patterns on Mars. Icarus 63:153–174CrossRefGoogle Scholar
  4. Collins GC, McKinnon WB, Moore JM, Nimmo F, Pappalardo RT, Prockter LM, Schenk PM (2010) Tectonics of the outer planet satellites. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  5. Fossen H (2010) Structural geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Golombek MP, Phillips RJ (2010) Mars tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  7. Grott M, Hauber E, Werner SC, Kronberg P, Neukum G (2007) Mechanical modeling of thrust faults in the Thaumasia region, Mars, and implications for the Noachian heat flux. Icarus 186:517–526CrossRefGoogle Scholar
  8. Jaeger WL, Turtle EP, Keszthelyi LP, McEwen AS (2002) The effect of thrust fault geometries on the surface deformation of Io: implications for mountains and paterae. 33rd Lunar Planet Sci Conf, abstract #1741, Houston, TXGoogle Scholar
  9. McGill GE, Stofan ER, Smrekar SE (2010) Venus tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  10. Mège D, Ernst RE (2001) Contractional effects of mantle plumes on Earth, Mars, and Venus. Geol Soc Am Spec Pap 352:103–140Google Scholar
  11. Mueller K, Golombek M (2004) Compressional structures on Mars. Annu Rev Earth Planet Sci 32:435–464CrossRefGoogle Scholar
  12. Schenk P, Hargitai H, Wilson R, McEwen A, Thomas P (2001) The mountains of Io: global and geological perspectives from Voyager and Galileo. J Geophys Res 106(E12):33201–33222. doi:10.1029/2000JE001408CrossRefGoogle Scholar
  13. Schultz RA, Tanaka KL (1994) Lithospheric-scale buckling and thrust structures on Mars: the Coprates rise and south Tharsis ridge belt. J Geophys Res 99:8371–8385CrossRefGoogle Scholar
  14. Schultz RA, Watters TR (2001) Forward mechanical modeling of the Amenthes Rupes thrust fault on Mars. Geophys Res Lett 28:4659–4662CrossRefGoogle Scholar
  15. Schultz RA, Soliva R, Okubo CH, Mege D (2010) Fault populations. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  16. Solomon SC, Smrekar SE, Bindschadler DL, Grimm RE, Kaula WM, McGill GE, Phillips RJ, Saunders RS, Schubert G, Squyres SW, Stofan ER (1992) Venus tectonics: an overview of Magellan observations. J Geophys Res 97:13199–13255CrossRefGoogle Scholar
  17. Solomon SC, McNutt RL Jr, Watters TR, Lawrence DJ, Feldman WC, Head JW, Krimigis SM, Murchie SL, Phillips RJ, Slavin JA, Zuber MT (2008) Return to Mercury: a global perspective on MESSENGER’s first Mercury flyby. Science 321:59–62CrossRefGoogle Scholar
  18. Strom RG, Trask NJ, Guest JE (1975) Tectonism and volcanism on Mercury. J Geophys Res 80:2478–2507CrossRefGoogle Scholar
  19. Thomas PC, Prockter LM (2010) Tectonics of small bodies. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  20. Vidal A, Mueller KM, Golombek MP (2005) Geometry of thrust faults beneath Amenthes Rupes, Mars. 36th Lunar Planet Sci Conf, abstract #2333, Houston, TXGoogle Scholar
  21. Watters TR (1988) Wrinkle ridge assemblages on the terrestrial planets. J Geophys Res 93:10236–10254CrossRefGoogle Scholar
  22. Watters TR, Johnson CL (2010) Lunar tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  23. Watters TR, Nimmo F (2010) The tectonics of Mercury. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, CambridgeGoogle Scholar
  24. Watters TR, Robinson MS, Cook AC (1997) Comparison of Discovery Rupes, Mercury with terrestrial thrust faults: new estimates of the decrease in radius of the planet due to global contraction. Lunar Planet Sci XXVIII, abstract #1515, Houston, TXGoogle Scholar
  25. Watters TR, Solomon SC, Robinson MS, Head JW, Andre SL et al (2009) The tectonics of Mercury; the view after MESSENGER’s first flyby. Earth Planet Sci Lett 285(3–4):283–296CrossRefGoogle Scholar
  26. Watters TR, Robinson MS, Beyer RA, Banks ME, Bell JF III et al (2010) Evidence of recent thrust faulting on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Science 329(5994):936–940CrossRefGoogle Scholar
  27. Watters TR, Thomas PC, Robinson MS (2011) Thrust faults and the near-surface strength of asteroid 433 Eros. Geophys Res Lett 38(2):L02202CrossRefGoogle Scholar
  28. Zuber MT, Smith DE, Phillips RJ, Solomon SC et al (2012) Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry. Science 336:217–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA