Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Radiating Lineament System

  • Eric B. Grosfils
  • Richard Ernst
  • Gerald A. Galgana
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_297

Definition

Laterally extensive lineament system (interpreted as fractures, dikes, or grabens) radiating from a tectono-magmatic center.

Related Terms

Giant radiating lineament system; radiating/radial graben/fissure/fracture system; graben-fissure system; radiating dike swarm and giant radiating dike swarm; nova.

Description

Long extensional lineaments (predominantly grabens, fissures, and related fractures; rare ridges occur) in a radiating or fanning pattern. Grabens and fissures can be superposed by pit chains, pit troughs, lava channels, rilles, and small shield volcanoes. On Venus, they are about 50–2,800 km in radius with an average radius of about 325 km (Grosfils and Head 1994b; Ernst et al. 2003). On Venus, grabens and fissures tend to cluster near the center, with fissures often grading smoothly into fractures at greater distances (Grosfils and Head 1994b).

Morphology

Geometries of giant radiating dike swarms (Ernst et al. 2001; Fig. 1):
  1. (1)

    Continuous fanning pattern

     
  2. (2)

    Fa...

This is a preview of subscription content, log in to check access.

References

  1. Aspler LB, Ernst RE (2003) Dyke-induced graben on Venus and Mars: analogues for Earth’s rock record. 34th Lunar Planet Sci Conf, abstract #1711, HoustonGoogle Scholar
  2. Baer G, Heimann A (eds) (1995) Physics and chemistry of dykes. Balkema Publishers, RotterdamGoogle Scholar
  3. Banerdt WB, Golombek MP, Tanaka KL (1992) Stress and tectonics on Mars. In: Kieffer HH, et al. (eds.), Mars. University of Arizona Press, Arizona, pp. 249–297Google Scholar
  4. Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke Swarms – time markers of crustal evolution. Taylor and Francis/Balkema, London, pp 3–26CrossRefGoogle Scholar
  5. Buchan KL, Ernst RE (2004) Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada Map 2022A, with map 1:5,000,000 and accompanying notesGoogle Scholar
  6. Chestler SR, Grosfils EB (2013) Using numerical modeling to explore the origin of intrusion patterns on Fernandina volcano, Galapagos Islands, Ecuador. Geophys Res Lett 40:4565–4569CrossRefGoogle Scholar
  7. Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge, UKGoogle Scholar
  8. Ernst RE, Baragar WRA (1992) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356: 511–513CrossRefGoogle Scholar
  9. Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can J Earth Sci 47:695–739CrossRefGoogle Scholar
  10. Ernst RE, Desnoyers DW (2004) Lessons from Venus for understanding mantle plumes on Earth. Phys Earth Planet In 146:195–229CrossRefGoogle Scholar
  11. Ernst RE, Jowitt SM (2013) Large igneous provinces and metallogeny. In: Society of Economic Geologists special publication 17. Society of Economic Geologists, Littleton, USA, pp 17–51Google Scholar
  12. Ernst RE, Head JW, Parfitt E, Grosfils E, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58CrossRefGoogle Scholar
  13. Ernst RE, Grosfils EB, Mège D (2001) Giant dike swarms: Earth, Venus, and Mars. Annu Rev Earth Planet Sci 29:489–534CrossRefGoogle Scholar
  14. Ernst RE, Desnoyers DW, Head JW, Grosfils EB (2003) Graben–fissure systems in Guinevere Planitia and Beta Regio (264◦–312◦E, 24◦–60◦N), Venus, and implications for regional stratigraphy and mantle plumes. Icarus 164:282–316CrossRefGoogle Scholar
  15. Fahrig WF (1987) The tectonic settings of continental mafic dyke swarms: failed arm and early passive margin. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological association of Canada special paper 34. Geological Association of Canada. Toronto, ON. pp 331–348Google Scholar
  16. Fahrig WF, West TD (1986) Diabase dyke swarms of the Canadian shield. Map 1627A. Geological Survey of Canada, OttawaCrossRefGoogle Scholar
  17. Fahrig WF, Gaucher EH, Larochelle A (1965) Paleomagnetism of diabase dykes of the Canadian Shield. Can J Earth Sci 2:278–298CrossRefGoogle Scholar
  18. Freed AM, Solomon SC, Watter TR, Phillips RJ, Zuber MT (2009) Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury? Earth Planet Sci Lett 285:320–327CrossRefGoogle Scholar
  19. Galgana GA, Grosfils EB, McGovern PJ (2013) Radial dike formation on Venus from upper lithosphere magma chambers: Insights from models of uplift, flexure and magmatism. Icarus 225: 538–547CrossRefGoogle Scholar
  20. Grindrod PM, Nimmo F, Stofan ER, Guest JE (2005) Strain at radially fractured centers on Venus. J Geophys Res 110:E12002. doi:10.1029/2005JE002416CrossRefGoogle Scholar
  21. Grosfils EB, Ernst RE (2003) Magma reservoirs feeding giant radiating dike swarms: insights from Venus. 34th Lunar Planet Sci Conf, abstract #1808, HoustonGoogle Scholar
  22. Grosfils EB, Head JW (1994a) Emplacement of a radiating dike swarm in western Vinmara Planitia, Venus: interpretation of the regional stress field orientation and subsurface magmatic configuration. Earth Moon Planets 66:153–171CrossRefGoogle Scholar
  23. Grosfils EB, Head JW (1994b) The global distribution of giant radiating dike swarms on Venus: implications for the global stress state. Geophys Res Lett 21(8):701–704CrossRefGoogle Scholar
  24. Grosfils EB, Long SM, Venechuk EM, Hurwitz DM, Richards JW, Kastl B, Drury DE, Hardin J (2011) Geologic map of the Ganiki Planitia quadrangle (V-14), Venus, U.S. Geological Survey Investigations Map 3121, scale 1:5,000,000, 1 sheet, includes pamphlet (http://pubs.usgs.gov/sim/3121/)
  25. Halls HC (1982) The importance and potential of mafic dyke swarms in studies of geodynamic process. Geosci Can 9:145–154Google Scholar
  26. Halls HC, Fahrig WF (eds) (1987) Mafic Dyke swarms. Geological Association of Canada, special paper 34. Geological Association of Canada, Toronto ON. pp 503Google Scholar
  27. Hanski E, Mertanen S, Rämö T, Vuollo J (eds) (2006) Dyke swarms – time markers of crustal evolution. A.A. Balkema, RotterdamGoogle Scholar
  28. Head III JW, Coffin MF (1997) Large igneous provinces: a planetary perspective. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism. Geophysical monograph 100. American Geophysical Union, Washington DC. pp 411–436Google Scholar
  29. Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS (1992) Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97:13153–13197CrossRefGoogle Scholar
  30. Head JW, Wilson L, Mitchell KL (2003) Generation of recent massive water floods at the Cerberus Fossae, Mars by the dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys Res Lett 30(11):1577. doi:10.1029/2003GL017135CrossRefGoogle Scholar
  31. Head JW, Murchie SL, Prockter LM, Solomon SC, Strom RG, Chapman CR, Watters TR, Blewett DT, Gillis-Davis JJ, Fassett CI, Dickson JL, Hurwitz DM, Ostrach LR (2009) Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth Planet Sci Lett 285:251–262CrossRefGoogle Scholar
  32. Hurwitz DM, Long SM, Grosfils EB (2009) The characteristics of magma reservoir failure beneath a volcanic edifice. J Volcanol Geothermal Res 188:379–394CrossRefGoogle Scholar
  33. Janes DM, Squyres SW, Bindshadler DL, Baer G, Schubert G, Sharpton VL, Stofan ER (1992) Geophysical models for the formation and evolution of coronae on Venus. J Geophys Res 97:16055–16067CrossRefGoogle Scholar
  34. McKenzie D, McKenzie JM, Saunders RS (1992) Dyke emplacement on Venus and Earth. J Geophys Res 97:13533–13544CrossRefGoogle Scholar
  35. Mege D, Masson P (1996) A plume tectonics model for the Tharsis province. Mars Planet Space Sci 44(12):1499–1546CrossRefGoogle Scholar
  36. Ode H (1957) Mechanical analysis of the dike pattern of the Spanish Peaks area, Colorado. Geol Soc Am Bull 68:567–576CrossRefGoogle Scholar
  37. Parfitt EA, Head JW (1993) Formation and evolution of radial fracture systems on Venus. Lunar Planet Sci XXIV:1113–1114, HoustonGoogle Scholar
  38. Parker AJ, Rickwood PC, Tucker DH (eds) (1990) Mafic dykes and emplacement mechanisms. Balkema Publishers, RotterdamGoogle Scholar
  39. Pedersen GBM et al (2010) Formation, erosion and exposure of Early Amazonian dikes, dike swarms and possible subglacial eruptions in the Elysium Rise/Utopia Basin region, Mars. Earth Planet Sci Lett 294(3–4):424–439CrossRefGoogle Scholar
  40. Scott RD, Wilson L, Head III JW (2002) Emplacement of giant radial dikes in the northern Tharsis region of Mars. J Geophys Res 107(E4). doi:10.1029/2000JE001431Google Scholar
  41. Srivastava RK (ed) (2011) Dyke swarms: keys for geodynamic interpretation. Springer, HeidelbergGoogle Scholar
  42. Stofan ER, Bindschadler DL, Head JW, Parmentier EM (1991) Corona structures on Venus: models of origin. J Geophys Res 96:20933–20946CrossRefGoogle Scholar
  43. Studd D, Ernst RE, Samson C (2011) Radiating graben–fissure systems in the Ulfrun Regio area, Venus. Icarus 215:279–291CrossRefGoogle Scholar
  44. Vetterlein J, Roberts GP (2010) Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J Struct Geol 32:394–406CrossRefGoogle Scholar
  45. Wilson L, Head JW (2002) Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J Geophys Res 107. doi: 10.1029/2001JE001593Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eric B. Grosfils
    • 1
  • Richard Ernst
    • 2
  • Gerald A. Galgana
    • 3
  1. 1.Geology DepartmentPomona CollegeClaremontUSA
  2. 2.Department of Earth SciencesCarleton UniversityOttawaCanada
  3. 3.Lunar and Planetary Institute, USRAHoustonUSA