Skip to main content

Regolith

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Planetary Landforms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CC, Morris RV, Jager KM, Golden DC et al (1998) Martian regolith simulant JSC Mars-1. Lunar Planet Sci Conf XXIX, abstract #1690, Houston

    Google Scholar 

  • Anand M, Crawford IA, Balat-Pichelin M, Abanades S, van Westrenen W, Péraudeau G, Jaumann R, Seboldt W (2012) A brief review of chemical and mineralogical resources on the Moon and their potential utilization. Planet Space Sci 74:42–48

    Article  Google Scholar 

  • Anders E, Ganapathy R, Krähenbühl U, Morgan JW (1973) Meteoritic material on the Moon. Moon 8(1–2):3–24

    Article  Google Scholar 

  • Arvidson RE, Greeley R, Malin MC, Saunders RS, Izenberg N, Plaut JJ, Stofan ER, Shepard MK (1992) Surface modification of Venus as inferred from Magellan observations of plains. J Geophys Res 97(E8):13303–13317. doi:10.1029/92JE01384

    Article  Google Scholar 

  • Arvidson RE et al (2011) Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. J Geophys Res 116:E00F15. doi:10.1029/2010JE003746

    Google Scholar 

  • Bandfield JL, Rogers AD, Edwards CS (2011) The role of aqueous alteration in the formation of Martian soils. Icarus 211:157–171

    Article  Google Scholar 

  • Banin A (1993) The mineralogy and formation processes of Mars soil. In: Lunar and Planetary Inst., MSATT workshop on chemical weathering on Mars, pp 1–2 (SEE N93-31933 12–91)

    Google Scholar 

  • Bart GD, Nickerson RD, Lawder MT, Melosh HJ (2011) Global survey of lunar regolith depths from LROC images. Icarus 215(2):485–490

    Article  Google Scholar 

  • Basu A, Molinaroli E (2001) Sediments of the Moon and Earth as end-members for comparative planetology. Earth Moon Planets 85(86):25–43

    Google Scholar 

  • Blake DF et al. (2013) Curiosity at gale crater, mars: characterization and analysis of the rocknest sand shadow. Science 341(6153). doi:10.1126/science.1239505

    Google Scholar 

  • Cain JR (2010) Lunar dust: the hazard and astronaut exposure risk. Earth Moon Planets 107(1):107–125

    Article  Google Scholar 

  • Carr NM (1996) Channels and valleys on Mars : cold climate features formed as a result of a thickening cryosphere. Planet Space Sci 44(11):1411–1423

    Article  Google Scholar 

  • Carr MH, Head JW (2010) Acquisition and history of water on mars. In: Cabrol NA, Grin EA (eds), Lakes on mars. Elsevier, 3

    Google Scholar 

  • Campbell BA, Arvidson RE, Shepard MK, Brackett RA (1997) Remote sensing of surface processes. In: Bougher SW et al (eds) Venus II. The University of Arizona Press, Tucson, pp 503–527

    Google Scholar 

  • Certini G, Ugolini FC (2013) An updated, expanded, universal definition of soil. Geoderma 192:378–379

    Article  Google Scholar 

  • Cintala MJ (1992) Impact-induced thermal effects in the lunar and Mercurian regoliths. J Geophys Res 97:947–973

    Article  Google Scholar 

  • Clarke JDA (2003) The limits of regolith: a planetary scale perspective. In: Roach IC (ed) Advances in regolith. CRC LEME, Bentley, pp 74–77

    Google Scholar 

  • Clarke JDA (2008) Extraterrestrial regolith. In: Scott K, Pain CF (eds) Regolith science. CSIRO Publishing, Melbourne, pp 377–407

    Google Scholar 

  • Clayton CRI, Simons NE, Matthews MC (1995) Site investigation, 2nd edn. Blackwell Science, London

    Google Scholar 

  • Cord AM, Pinet PC, Daydou Y, Chevrel SD (2003) Planetary regolith surface analogs: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data. Icarus 165:414–427

    Article  Google Scholar 

  • Costes NC et al (1970) Apollo 11: soil mechanics results. J Soil Mech Found Div, SM 6, ASCE, 2045–2080

    Google Scholar 

  • Crawford IA, Fagents SA, Joy KH, Rumpf ME (2010) Lunar palaeoregolith deposits as recorders of the galactic environment of the solar system and implications for astrobiology. Earth Moon Planets 107(1):75–85

    Article  Google Scholar 

  • Edwards CS, Bandfield JL, Christensen PR, Fergason RL (2009) Global distribution of bedrock exposures on mars using THEMIS high-resolution thermal inertia. J Geophys Res 114: E11001. doi:10.1029/2009JE003363

    Article  Google Scholar 

  • Eggleton RA (ed) (2001) The regolith glossary. Cooperative Research Centre for Landscape Evolution and Mineral Exploration, Canberra

    Google Scholar 

  • Fagents SA, Rumpf ME, Crawford IA, Joy KH (2010) Preservation potential of implanted solar wind volatiles in lunar paleoregolith deposits buried by lava flows. Icarus 207(2):595–604

    Article  Google Scholar 

  • Fell R, Hungr O, Leroueil S, Riemer W (2000) Keynote paper − geotechnical engineering of the stability of natural slopes and cuts and fills in soil. In: Proceedings of GeoEng2000, international conference on geotechnical and geological engineering, Melbourne, 104 p

    Google Scholar 

  • Flynn GJ (2008) Physical, chemical, and mineralogical properties of Comet 81P/Wild 2 particles collected by stardust. Earth Moon Planets 102(1–4):447–459. doi:10.1007/s11038-007-9214-y

    Article  Google Scholar 

  • Flynn GJ, McKay DS (1990) An assessment of the meteoritic contribution to the Martian soil. J Geophys Res 95(B9):14497–14509. doi:10.1029/JB095iB09p14497

    Article  Google Scholar 

  • Garvin JB (1990) The global budget of impact-derived sediments on Venus. Earth Moon Planets 50/51:175–190

    Article  Google Scholar 

  • Garvin JB, Head JW, Zuber MR, Helfenstein P (1984) Venus: the nature of the surface from Venera Panoramas. J Geophys Res 89(B5):3381–3399. doi:10.1029/JB089iB05p03381

    Article  Google Scholar 

  • Gundlach B, Blum J (2013) A new method to determine the grain size of planetary regolith. Icarus 223:479–492

    Article  Google Scholar 

  • Hartmann WK (1973) Ancient Lunar mega-regolith and subsurface structure. Icarus 18(4):634–636. Academic Press Inc, USA

    Google Scholar 

  • Hartmann WK, Phillips RJ, Taylor GJ (eds) (1986) Origin of the Moon. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Hartmann WK, Anguita J, de la Casa MA, Berman DC, Ryan EV (2001) Martian cratering 7: the role of impact gardening. Icarus 149:37–53. doi:10.1006/icar.2000.6532

    Article  Google Scholar 

  • Hiesinger H, Head III JW (2006) New views of Lunar geoscience: an introduction and overview. Rev Miner Geochem 60. doi:10.2138/rmg.2006.60.1

    Google Scholar 

  • de Hon RA (1982) Development of planetary megaregoliths. Lunar Planet. Sci. Conf. XIII:146–147, abstract, Houston

    Google Scholar 

  • Hörz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken G, Vaniman D, French B (eds) Lunar sourcebook – a user guide to the Moon. Cambridge University Press, Cambridge, New York, Melbourne, pp 61–120

    Google Scholar 

  • Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238

    Article  Google Scholar 

  • Jackson NW (2005) A compositional study of the lunar global megaregolith using Clementine orbiter data. Thesis, University of Southern Queensland. Available at http://eprints.usq.edu.au/1452/

  • Jagoutz E (2006) Salt-induced rock fragmentation on Mars: the role of salt in the weathering of Martian rocks. Adv Space Res 38:696–700

    Article  Google Scholar 

  • Johnson SW, Chua KM (1997) Engineering properties of the regolith on the Moon and Mars related to ISRU. ISRU II technical interchange meeting #9030

    Google Scholar 

  • Kereszturi A (2014) Surface processes in microgravity for landing and sampling site selection of asteroid missions – suggestions for MarcoPolo-R. Planet Space Sci (submitted)

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci 363(1492):685–701

    Article  Google Scholar 

  • Laul JC, Morgan JW, Ganapathy R, Anders E (1971) Meteoritic material in lunar samples: characterization from trace elements. Proc Lunar Sci Conf 2:1139

    Google Scholar 

  • Le Deit L, Flahaut J, Quantin C, Hauber E, Mège D, Bourgeois O, Gurgurewicz J, Massé M, Jaumann R (2012) Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. J Geophys Res 117:E00J05. doi:10.1029/2011JE003983

    Google Scholar 

  • Lindsay JF (1976) Lunar stratigraphy and sedimentology. Developments in solar system- and space science, vol 3. Elsevier, Amsterdam/Oxford/New York

    Google Scholar 

  • Lunine JI, Lorenz RD (2009) Rivers, lakes, dunes, and rain: crustal processes in Titan’s methane cycle. Annu Rev Earth Planet Sci 37:299–320

    Article  Google Scholar 

  • Marschall M, Dulai S, Kereszturi A (2012) Migrating and UV screening subsurface zone on Mars as target for the analysis of photosynthetic life and astrobiology. Planet Space Sci 71:146–153

    Article  Google Scholar 

  • McKay DS, Heiken G, Basu A, Blanford G, Simon S, Reedy R, French BM, Papike J (1991) The lunar regolith. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook. Cambridge University Press, Cambridge, New York, Melbourne

    Google Scholar 

  • McKay DS, Carter JL, Boles WW, Allen CC, Allton JH (1994) JSC-1: a new Lunar soil simulant. Engineering, construction, and operations in space IV. American Society of Civil Engineers, pp 857–866

    Google Scholar 

  • Mellon MT et al (2009) Ground ice at the Phoenix landing site: stability state and origin. J Geophys Res 114:E00E07. doi:10.1029/2009JE003417

    Google Scholar 

  • Merrill GP (1897) A treatise on rocks, rock weathering and soils. Macmillan, New York, 411 pp

    Google Scholar 

  • Miyamoto H, Yano H, Scheeres DJ, Abe S, Barnouin-Jha O et al (2007) Regolith migration and sorting on asteroid Itokawa. Science 316:1011–1014

    Article  Google Scholar 

  • Molaro JL, Byrne S (2011) Thermal stress weathering on Mercury and other airless bodies. 42nd Lunar Planet. Sci. Conf., LPI Contribution No. 1608, pp 1494–1495, Houston

    Google Scholar 

  • Moore HJ, Bickler DB, Crisp JA, Eisen HJ, Gensler JA, Haldemann AFC, Matijevic JR, Reid LK, Pavlics F (1999) Soil-like deposits observed by Sojourner, the Pathfinder rover. J Geophys Res 104(E4):8729–8746. doi:10.1029/1998JE900005

    Article  Google Scholar 

  • Morimoto Y, Miki T, Higashi T, Horie S, Tanaka K, Mukai C (2010) Effect of lunar dust on humans. Nihon Eiseigaku Zasshi 65(4):479–485

    Article  Google Scholar 

  • Morris RV, Score R, Dardano C, Heiken G (1983) Handbook of Lunar soils. NASA Planetary Materials Branch Publication, Houston 67 JSC 19069

    Google Scholar 

  • Neumann GA, Cavanaugh JF, Sun X, Mazarico EM, Smith DE, Zuber MT, Mao D, Paige DA, Solomon SC, Ernst CM, Barnouin OS (2013) Bright and dark polar deposits on Mercury: evidence for surface volatiles. Science 339:296–300. doi:10.1126/science.1229764

    Article  Google Scholar 

  • Noble SK, Pieters CM (2001) Space weathering in the Mercurian environment. In: Workshop on Mercury: space environment, surface, and interior. Proceedings of a workshop held at the Field Museum, Chicago. LPI contribution No. 1097, Lunar Planet Science Institute, Houston, pp 68–69

    Google Scholar 

  • Noguchi T, Kimura M, Hashimoto T, Konno M et al (2012) Space weathering products found on the surfaces of the Itokawa dust particles: a summary of the initial analysis. 43rd Lunar Planet Sci Conf, abstract #1896, Houston

    Google Scholar 

  • Ollier CD, Pain CF (1996) Regolith, soils and landforms. Wiley, Chichester, p 316

    Google Scholar 

  • Pain CF, Clarke JDA, Thomas M (2007) Inversion of relief on Mars. Icarus 190:478–491

    Article  Google Scholar 

  • Perko HA (1996) Effects of surface cleanliness on lunar regolith mechanics. 34th AIAA Aerospace Meeting and Exhibition, Reno, paper No. 96–0015

    Google Scholar 

  • Perko HA (2006) Geotechnical techniques used in planetary exploration. GEO-Volution 109–119. doi:10.1061/40890(219)8

    Google Scholar 

  • Rapp D (2006) Radiation effects and shielding requirements in Human missions to the Moon and Mars. Mars 2:46–71. doi:10.1555/mars.2006.0004

    Article  Google Scholar 

  • Robinson MS, Murchie SL, Blewett DT, Domingue DL, Hawkins SE III, Head JW, Holsclaw GM, McClintock WE, McCoy TJ, McNutt RL Jr, Prockter LM, Solomon SC, Watters TR (2008) Reflectance and color variations on Mercury: regolith processes and compositional heterogeneity. Science 321:66–69. doi:10.1126/science.1160080

    Article  Google Scholar 

  • Sanford SA et al (2006) Organics captured from Comet 81P/Wild 2 by the stardust spacecraft. Science 314(5806):1720–1724

    Article  Google Scholar 

  • Sasaki T, Sasaki S, Watanabe JI, Sekiguchi T, Yoshida F, Ito T, Kawakita H, Fuse T, Takato N, Dermawan B (2005) Difference in degree of space weathering on the newborn asteroid Karin. 36th Lunar Planet. Sci. Conf., abstract #1590, Houston

    Google Scholar 

  • Seiferlin K, Ehrenfreund P, Garry J, Gunderson K et al (2008) Simulating Martian regolith in the laboratory. Planet Space Sci 56:2009–2025

    Article  Google Scholar 

  • Shoemaker ES, Hait MH (1971) The Bombardment of the Lunar Maria. Lunar Planet. Sci. Conf. 2:11, Houston

    Google Scholar 

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328(5978):605–608. doi:10.1126/science.1186785

    Article  Google Scholar 

  • Squyres SW, Knoll AH, Arvidson RE, Ashley JW, Bell JFIII, Calvin WM, Christensen PR et al (2009) Exploration of Victoria crater by the Mars rover opportunity. Science 24(5930):1058–1061

    Article  Google Scholar 

  • Steila D, Pond TE (1989) The geography of soils: formation, distribution, and management. Rowman & Littlefield Savage, Maryland

    Google Scholar 

  • Strazzulla G, Garozo M, Gomis O (2009) The origin of sulfur-bearing species on the surfaces of icy satellites. Adv Space Res 43:1442–1445

    Article  Google Scholar 

  • Sueyoshi K, Watanabe T, Nakano Y, Kanamori H, Aoki S, Miyahara A, Matsui K (2008) Reaction mechanism of various types of Lunar soil simulants by hydrogen reduction. Earth Space 2008: Eng Sci Constr Oper Chall Environ 1–8. doi:http://dx.doi.org/10.1061/40988(323)134

  • Sullivan R et al (2008) Wind-driven particle mobility on Mars: insights from Mars exploration Rover observations at “El Dorado” and surroundings at Gusev Crater. J Geophys Res 113:E06S07. doi:10.1029/2008JE003101

    Google Scholar 

  • SWG Simulant Working Group of the Lunar Exploration Analysis Group and Curation and Analysis Planning Team for Extraterrestrial Materials (2010) Status of Lunar regolith simulants and demand for Apollo Lunar samples. Report to the Planetary Science Subcommittee of the NASA Advisory Council. http://www.lpi.usra.edu/leag/reports/SIM_SATReport2010.pdf

  • Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Thomas M, Clarke JDA, Pain CF (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible Earth analogues. Aust J Earth Sci 52:365–378

    Article  Google Scholar 

  • Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combes M, Cook D, Coustenis A, de Bergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Küppers M, Lanagan P, Lellouch E, Lemmon M, Lunine J, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schröder SE, Schmitt B, See C, Smith P, Soderblom L, Thomas N, West R (2005) Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438:765–778

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special report 176: landslides: analysis and control. Transportation and Road Research Board, National Academy of Science, Washington, DC, pp 11–33

    Google Scholar 

  • Walker RM (1980) Nature of the fossil evidence – Moon and meteorites. In: The ancient sun: fossil record in the Earth, Moon and meteorites. Proceedings of the conference, Boulder. Pergamon Press, New York/Oxford, pp 11–28

    Google Scholar 

  • Wilcox BB, Robinson MS, Thomas PC, Hawke BR (2005) Constraints on the depth and variability of the lunar regolith. Meteor Planet Sci 40(5):695–710

    Article  Google Scholar 

  • Zarnecki JC, Leese MR, Hathi B, Ball AJ, Hagermann A et al (2005) Soft solid surface on Titan as revealed by the Huygens surface science package. Nature 438:792–795. doi:10.1038/nature04211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Küppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Küppers, M., Pain, C., Kereszturi, Á., Hargitai, H. (2015). Regolith. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_293

Download citation

Publish with us

Policies and ethics