Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi


  • Michael Küppers
  • Colin Pain
  • Ákos Kereszturi
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_293


“The entire unconsolidated or secondarily recemented cover that overlies more coherent bedrock, that has been formed by weathering, erosion, transport and/or deposition of the older material.” The regolith thus includes weathered bedrock, saprolite, soils, fragmental volcanic material, impact ejecta, glacial deposits, colluvium, alluvium, evaporitic sediments, and aeolian deposits (see Eggleton 2001).


 Debris; Lunar dust and soil (Moon);  Soil;  Soil-like deposit (Mars)


Regolith is the highly variable, usually unconsolidated but sometimes recemented, granular layer at the surface of planetary bodies, overlying bedrock (Clarke 2008). This layer of debris is also termed “soil-like deposit” (on Mars) to distinguish it from terrestrial soils which are mechanically similar but contain organic materials (Moore et al. 1999). McKay et al. (1991) define “lunar soil” as the finer-grained (subcentimeter) fraction of the unconsolidated material (regolith) at the...

This is a preview of subscription content, log in to check access.


  1. Allen CC, Morris RV, Jager KM, Golden DC et al (1998) Martian regolith simulant JSC Mars-1. Lunar Planet Sci Conf XXIX, abstract #1690, HoustonGoogle Scholar
  2. Anand M, Crawford IA, Balat-Pichelin M, Abanades S, van Westrenen W, Péraudeau G, Jaumann R, Seboldt W (2012) A brief review of chemical and mineralogical resources on the Moon and their potential utilization. Planet Space Sci 74:42–48CrossRefGoogle Scholar
  3. Anders E, Ganapathy R, Krähenbühl U, Morgan JW (1973) Meteoritic material on the Moon. Moon 8(1–2):3–24CrossRefGoogle Scholar
  4. Arvidson RE, Greeley R, Malin MC, Saunders RS, Izenberg N, Plaut JJ, Stofan ER, Shepard MK (1992) Surface modification of Venus as inferred from Magellan observations of plains. J Geophys Res 97(E8):13303–13317. doi:10.1029/92JE01384CrossRefGoogle Scholar
  5. Arvidson RE et al (2011) Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. J Geophys Res 116:E00F15. doi:10.1029/2010JE003746Google Scholar
  6. Bandfield JL, Rogers AD, Edwards CS (2011) The role of aqueous alteration in the formation of Martian soils. Icarus 211:157–171CrossRefGoogle Scholar
  7. Banin A (1993) The mineralogy and formation processes of Mars soil. In: Lunar and Planetary Inst., MSATT workshop on chemical weathering on Mars, pp 1–2 (SEE N93-31933 12–91)Google Scholar
  8. Bart GD, Nickerson RD, Lawder MT, Melosh HJ (2011) Global survey of lunar regolith depths from LROC images. Icarus 215(2):485–490CrossRefGoogle Scholar
  9. Basu A, Molinaroli E (2001) Sediments of the Moon and Earth as end-members for comparative planetology. Earth Moon Planets 85(86):25–43Google Scholar
  10. Blake DF et al. (2013) Curiosity at gale crater, mars: characterization and analysis of the rocknest sand shadow. Science 341(6153). doi:10.1126/science.1239505Google Scholar
  11. Cain JR (2010) Lunar dust: the hazard and astronaut exposure risk. Earth Moon Planets 107(1):107–125CrossRefGoogle Scholar
  12. Carr NM (1996) Channels and valleys on Mars : cold climate features formed as a result of a thickening cryosphere. Planet Space Sci 44(11):1411–1423CrossRefGoogle Scholar
  13. Carr MH, Head JW (2010) Acquisition and history of water on mars. In: Cabrol NA, Grin EA (eds), Lakes on mars. Elsevier, 3Google Scholar
  14. Campbell BA, Arvidson RE, Shepard MK, Brackett RA (1997) Remote sensing of surface processes. In: Bougher SW et al (eds) Venus II. The University of Arizona Press, Tucson, pp 503–527Google Scholar
  15. Certini G, Ugolini FC (2013) An updated, expanded, universal definition of soil. Geoderma 192:378–379CrossRefGoogle Scholar
  16. Cintala MJ (1992) Impact-induced thermal effects in the lunar and Mercurian regoliths. J Geophys Res 97:947–973CrossRefGoogle Scholar
  17. Clarke JDA (2003) The limits of regolith: a planetary scale perspective. In: Roach IC (ed) Advances in regolith. CRC LEME, Bentley, pp 74–77Google Scholar
  18. Clarke JDA (2008) Extraterrestrial regolith. In: Scott K, Pain CF (eds) Regolith science. CSIRO Publishing, Melbourne, pp 377–407Google Scholar
  19. Clayton CRI, Simons NE, Matthews MC (1995) Site investigation, 2nd edn. Blackwell Science, LondonGoogle Scholar
  20. Cord AM, Pinet PC, Daydou Y, Chevrel SD (2003) Planetary regolith surface analogs: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data. Icarus 165:414–427CrossRefGoogle Scholar
  21. Costes NC et al (1970) Apollo 11: soil mechanics results. J Soil Mech Found Div, SM 6, ASCE, 2045–2080Google Scholar
  22. Crawford IA, Fagents SA, Joy KH, Rumpf ME (2010) Lunar palaeoregolith deposits as recorders of the galactic environment of the solar system and implications for astrobiology. Earth Moon Planets 107(1):75–85CrossRefGoogle Scholar
  23. Edwards CS, Bandfield JL, Christensen PR, Fergason RL (2009) Global distribution of bedrock exposures on mars using THEMIS high-resolution thermal inertia. J Geophys Res 114: E11001. doi:10.1029/2009JE003363CrossRefGoogle Scholar
  24. Eggleton RA (ed) (2001) The regolith glossary. Cooperative Research Centre for Landscape Evolution and Mineral Exploration, CanberraGoogle Scholar
  25. Fagents SA, Rumpf ME, Crawford IA, Joy KH (2010) Preservation potential of implanted solar wind volatiles in lunar paleoregolith deposits buried by lava flows. Icarus 207(2):595–604CrossRefGoogle Scholar
  26. Fell R, Hungr O, Leroueil S, Riemer W (2000) Keynote paper − geotechnical engineering of the stability of natural slopes and cuts and fills in soil. In: Proceedings of GeoEng2000, international conference on geotechnical and geological engineering, Melbourne, 104 pGoogle Scholar
  27. Flynn GJ (2008) Physical, chemical, and mineralogical properties of Comet 81P/Wild 2 particles collected by stardust. Earth Moon Planets 102(1–4):447–459. doi:10.1007/s11038-007-9214-yCrossRefGoogle Scholar
  28. Flynn GJ, McKay DS (1990) An assessment of the meteoritic contribution to the Martian soil. J Geophys Res 95(B9):14497–14509. doi:10.1029/JB095iB09p14497CrossRefGoogle Scholar
  29. Garvin JB (1990) The global budget of impact-derived sediments on Venus. Earth Moon Planets 50/51:175–190CrossRefGoogle Scholar
  30. Garvin JB, Head JW, Zuber MR, Helfenstein P (1984) Venus: the nature of the surface from Venera Panoramas. J Geophys Res 89(B5):3381–3399. doi:10.1029/JB089iB05p03381CrossRefGoogle Scholar
  31. Gundlach B, Blum J (2013) A new method to determine the grain size of planetary regolith. Icarus 223:479–492CrossRefGoogle Scholar
  32. Hartmann WK (1973) Ancient Lunar mega-regolith and subsurface structure. Icarus 18(4):634–636. Academic Press Inc, USAGoogle Scholar
  33. Hartmann WK, Phillips RJ, Taylor GJ (eds) (1986) Origin of the Moon. Lunar and Planetary Institute, HoustonGoogle Scholar
  34. Hartmann WK, Anguita J, de la Casa MA, Berman DC, Ryan EV (2001) Martian cratering 7: the role of impact gardening. Icarus 149:37–53. doi:10.1006/icar.2000.6532CrossRefGoogle Scholar
  35. Hiesinger H, Head III JW (2006) New views of Lunar geoscience: an introduction and overview. Rev Miner Geochem 60. doi:10.2138/rmg.2006.60.1Google Scholar
  36. de Hon RA (1982) Development of planetary megaregoliths. Lunar Planet. Sci. Conf. XIII:146–147, abstract, HoustonGoogle Scholar
  37. Hörz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken G, Vaniman D, French B (eds) Lunar sourcebook – a user guide to the Moon. Cambridge University Press, Cambridge, New York, Melbourne, pp 61–120Google Scholar
  38. Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238CrossRefGoogle Scholar
  39. Jackson NW (2005) A compositional study of the lunar global megaregolith using Clementine orbiter data. Thesis, University of Southern Queensland. Available at http://eprints.usq.edu.au/1452/
  40. Jagoutz E (2006) Salt-induced rock fragmentation on Mars: the role of salt in the weathering of Martian rocks. Adv Space Res 38:696–700CrossRefGoogle Scholar
  41. Johnson SW, Chua KM (1997) Engineering properties of the regolith on the Moon and Mars related to ISRU. ISRU II technical interchange meeting #9030Google Scholar
  42. Kereszturi A (2014) Surface processes in microgravity for landing and sampling site selection of asteroid missions – suggestions for MarcoPolo-R. Planet Space Sci (submitted)Google Scholar
  43. Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci 363(1492):685–701CrossRefGoogle Scholar
  44. Laul JC, Morgan JW, Ganapathy R, Anders E (1971) Meteoritic material in lunar samples: characterization from trace elements. Proc Lunar Sci Conf 2:1139Google Scholar
  45. Le Deit L, Flahaut J, Quantin C, Hauber E, Mège D, Bourgeois O, Gurgurewicz J, Massé M, Jaumann R (2012) Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. J Geophys Res 117:E00J05. doi:10.1029/2011JE003983Google Scholar
  46. Lindsay JF (1976) Lunar stratigraphy and sedimentology. Developments in solar system- and space science, vol 3. Elsevier, Amsterdam/Oxford/New YorkGoogle Scholar
  47. Lunine JI, Lorenz RD (2009) Rivers, lakes, dunes, and rain: crustal processes in Titan’s methane cycle. Annu Rev Earth Planet Sci 37:299–320CrossRefGoogle Scholar
  48. Marschall M, Dulai S, Kereszturi A (2012) Migrating and UV screening subsurface zone on Mars as target for the analysis of photosynthetic life and astrobiology. Planet Space Sci 71:146–153CrossRefGoogle Scholar
  49. McKay DS, Heiken G, Basu A, Blanford G, Simon S, Reedy R, French BM, Papike J (1991) The lunar regolith. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook. Cambridge University Press, Cambridge, New York, MelbourneGoogle Scholar
  50. McKay DS, Carter JL, Boles WW, Allen CC, Allton JH (1994) JSC-1: a new Lunar soil simulant. Engineering, construction, and operations in space IV. American Society of Civil Engineers, pp 857–866Google Scholar
  51. Mellon MT et al (2009) Ground ice at the Phoenix landing site: stability state and origin. J Geophys Res 114:E00E07. doi:10.1029/2009JE003417Google Scholar
  52. Merrill GP (1897) A treatise on rocks, rock weathering and soils. Macmillan, New York, 411 ppGoogle Scholar
  53. Miyamoto H, Yano H, Scheeres DJ, Abe S, Barnouin-Jha O et al (2007) Regolith migration and sorting on asteroid Itokawa. Science 316:1011–1014CrossRefGoogle Scholar
  54. Molaro JL, Byrne S (2011) Thermal stress weathering on Mercury and other airless bodies. 42nd Lunar Planet. Sci. Conf., LPI Contribution No. 1608, pp 1494–1495, HoustonGoogle Scholar
  55. Moore HJ, Bickler DB, Crisp JA, Eisen HJ, Gensler JA, Haldemann AFC, Matijevic JR, Reid LK, Pavlics F (1999) Soil-like deposits observed by Sojourner, the Pathfinder rover. J Geophys Res 104(E4):8729–8746. doi:10.1029/1998JE900005CrossRefGoogle Scholar
  56. Morimoto Y, Miki T, Higashi T, Horie S, Tanaka K, Mukai C (2010) Effect of lunar dust on humans. Nihon Eiseigaku Zasshi 65(4):479–485CrossRefGoogle Scholar
  57. Morris RV, Score R, Dardano C, Heiken G (1983) Handbook of Lunar soils. NASA Planetary Materials Branch Publication, Houston 67 JSC 19069Google Scholar
  58. Neumann GA, Cavanaugh JF, Sun X, Mazarico EM, Smith DE, Zuber MT, Mao D, Paige DA, Solomon SC, Ernst CM, Barnouin OS (2013) Bright and dark polar deposits on Mercury: evidence for surface volatiles. Science 339:296–300. doi:10.1126/science.1229764CrossRefGoogle Scholar
  59. Noble SK, Pieters CM (2001) Space weathering in the Mercurian environment. In: Workshop on Mercury: space environment, surface, and interior. Proceedings of a workshop held at the Field Museum, Chicago. LPI contribution No. 1097, Lunar Planet Science Institute, Houston, pp 68–69Google Scholar
  60. Noguchi T, Kimura M, Hashimoto T, Konno M et al (2012) Space weathering products found on the surfaces of the Itokawa dust particles: a summary of the initial analysis. 43rd Lunar Planet Sci Conf, abstract #1896, HoustonGoogle Scholar
  61. Ollier CD, Pain CF (1996) Regolith, soils and landforms. Wiley, Chichester, p 316Google Scholar
  62. Pain CF, Clarke JDA, Thomas M (2007) Inversion of relief on Mars. Icarus 190:478–491CrossRefGoogle Scholar
  63. Perko HA (1996) Effects of surface cleanliness on lunar regolith mechanics. 34th AIAA Aerospace Meeting and Exhibition, Reno, paper No. 96–0015Google Scholar
  64. Perko HA (2006) Geotechnical techniques used in planetary exploration. GEO-Volution 109–119. doi:10.1061/40890(219)8Google Scholar
  65. Rapp D (2006) Radiation effects and shielding requirements in Human missions to the Moon and Mars. Mars 2:46–71. doi:10.1555/mars.2006.0004CrossRefGoogle Scholar
  66. Robinson MS, Murchie SL, Blewett DT, Domingue DL, Hawkins SE III, Head JW, Holsclaw GM, McClintock WE, McCoy TJ, McNutt RL Jr, Prockter LM, Solomon SC, Watters TR (2008) Reflectance and color variations on Mercury: regolith processes and compositional heterogeneity. Science 321:66–69. doi:10.1126/science.1160080CrossRefGoogle Scholar
  67. Sanford SA et al (2006) Organics captured from Comet 81P/Wild 2 by the stardust spacecraft. Science 314(5806):1720–1724CrossRefGoogle Scholar
  68. Sasaki T, Sasaki S, Watanabe JI, Sekiguchi T, Yoshida F, Ito T, Kawakita H, Fuse T, Takato N, Dermawan B (2005) Difference in degree of space weathering on the newborn asteroid Karin. 36th Lunar Planet. Sci. Conf., abstract #1590, HoustonGoogle Scholar
  69. Seiferlin K, Ehrenfreund P, Garry J, Gunderson K et al (2008) Simulating Martian regolith in the laboratory. Planet Space Sci 56:2009–2025CrossRefGoogle Scholar
  70. Shoemaker ES, Hait MH (1971) The Bombardment of the Lunar Maria. Lunar Planet. Sci. Conf. 2:11, HoustonGoogle Scholar
  71. Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328(5978):605–608. doi:10.1126/science.1186785CrossRefGoogle Scholar
  72. Squyres SW, Knoll AH, Arvidson RE, Ashley JW, Bell JFIII, Calvin WM, Christensen PR et al (2009) Exploration of Victoria crater by the Mars rover opportunity. Science 24(5930):1058–1061CrossRefGoogle Scholar
  73. Steila D, Pond TE (1989) The geography of soils: formation, distribution, and management. Rowman & Littlefield Savage, MarylandGoogle Scholar
  74. Strazzulla G, Garozo M, Gomis O (2009) The origin of sulfur-bearing species on the surfaces of icy satellites. Adv Space Res 43:1442–1445CrossRefGoogle Scholar
  75. Sueyoshi K, Watanabe T, Nakano Y, Kanamori H, Aoki S, Miyahara A, Matsui K (2008) Reaction mechanism of various types of Lunar soil simulants by hydrogen reduction. Earth Space 2008: Eng Sci Constr Oper Chall Environ 1–8. doi:http://dx.doi.org/10.1061/40988(323)134
  76. Sullivan R et al (2008) Wind-driven particle mobility on Mars: insights from Mars exploration Rover observations at “El Dorado” and surroundings at Gusev Crater. J Geophys Res 113:E06S07. doi:10.1029/2008JE003101Google Scholar
  77. SWG Simulant Working Group of the Lunar Exploration Analysis Group and Curation and Analysis Planning Team for Extraterrestrial Materials (2010) Status of Lunar regolith simulants and demand for Apollo Lunar samples. Report to the Planetary Science Subcommittee of the NASA Advisory Council. http://www.lpi.usra.edu/leag/reports/SIM_SATReport2010.pdf
  78. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  79. Thomas M, Clarke JDA, Pain CF (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible Earth analogues. Aust J Earth Sci 52:365–378CrossRefGoogle Scholar
  80. Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combes M, Cook D, Coustenis A, de Bergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Küppers M, Lanagan P, Lellouch E, Lemmon M, Lunine J, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schröder SE, Schmitt B, See C, Smith P, Soderblom L, Thomas N, West R (2005) Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438:765–778CrossRefGoogle Scholar
  81. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special report 176: landslides: analysis and control. Transportation and Road Research Board, National Academy of Science, Washington, DC, pp 11–33Google Scholar
  82. Walker RM (1980) Nature of the fossil evidence – Moon and meteorites. In: The ancient sun: fossil record in the Earth, Moon and meteorites. Proceedings of the conference, Boulder. Pergamon Press, New York/Oxford, pp 11–28Google Scholar
  83. Wilcox BB, Robinson MS, Thomas PC, Hawke BR (2005) Constraints on the depth and variability of the lunar regolith. Meteor Planet Sci 40(5):695–710CrossRefGoogle Scholar
  84. Zarnecki JC, Leese MR, Hathi B, Ball AJ, Hagermann A et al (2005) Soft solid surface on Titan as revealed by the Huygens surface science package. Nature 438:792–795. doi:10.1038/nature04211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael Küppers
    • 1
  • Colin Pain
    • 2
  • Ákos Kereszturi
    • 3
  • Henrik Hargitai
    • 4
  1. 1.European Space Astronomy Centre, European Space AgencyVillanueva de la Cañada, MadridSpain
  2. 2.MED_SoilUniversity of SevilleSevilleSpain
  3. 3.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  4. 4.NASA Ames Research Center/NPPMoffett FieldUSA