Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Radar Feature

  • Henrik Hargitai
  • Ákos Kereszturi
  • Flora Paganelli
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_290

Definition

Any region on a geologic surface that shows characteristic physical or dielectric properties, different from that of the surroundings and/or the global average, which are identified through the interaction between the surface and the radar signal.

The radar signal produces a reflected signal, whose amplitudes and polarizations depend upon the relative geometry of the feature and the dielectric properties of the media.

Synonyms

Related Terms

Microwave imaging.

Description

Any surface feature discernible on radar images. A radar feature is characterized by the portion of reflected radar signal due to a physical roughness or topographical change of the surface or a compositional change between terrain units in a geologic surface.

Subtypes

Many landform types have distinct radar signatures. Rough mountains, blocky or disrupted lava flows (Harmon et al. 2012) or blocky impact ejecta are typically radar-bright, while smooth surfaces, e.g., lakes, or surfaces...
This is a preview of subscription content, log in to check access.

References

  1. Bondarenko NV, Kreslavsky MA, Head JW (2006) North–south roughness anisotropy on Venus from the Magellan Radar Altimeter: Correlation with geology. J Geophys Res 111:E06S12. doi:10.1029/2005JE002599Google Scholar
  2. Carter LM, Campbell DB, Campbell BA (2006) Volcanic deposits in shield fields and highland regions on Venus: surface properties from radar polarimetry. J Geophys Res 111:E06005. doi:10.1029/2005JE002519Google Scholar
  3. Chabot NL, Ernst CM, Harmon JK, Murchie SL, Solomon SC, Blewett DT, Denevi BW (2013) Craters hosting radar-bright deposits in Mercury’s north polar region: areas of persistent shadow determined from MESSENGER images. J Geophys Res Planet 118:26–36. doi:10.1029/2012JE004172CrossRefGoogle Scholar
  4. Connors C (1995) Determining heights and slopes of fault scarps and other surfaces on Venus using Magellan stereo radar. J Geophys Res 100(E7):14361–14381. doi:10.1029/95JE01134CrossRefGoogle Scholar
  5. Farr TG (1993) Radar interactions with geologic surfaces. In: Ford JP et al (eds) Guide to Magellan image interpretation, JPL Publication, 93-24. NASA, Jet Propulsion Laboratory, Pasadena, pp 45–56Google Scholar
  6. Farr TG et al (2007) The Shuttle Radar Topography Mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183CrossRefGoogle Scholar
  7. Freeman T (1996) What is imaging radar? NASA/JPL’s Imaging Radar Program. http://southport.jpl.nasa.gov/desc/imagingradarv3.html
  8. Garvin JB, Head JW, Pettengill GH, Zisk SH (1985) Venus global radar reflectivity and correlations with elevation. J Geophys Res 90(B8):6859–6871CrossRefGoogle Scholar
  9. Gelautz M, Weinbergmair F, Leberl F (1996) On the detection and exploitation of layover in Magellan SAR imagery. Int Arch Photogramm Remote Sens 31(B4):283–288, ViennaGoogle Scholar
  10. Harmon JK, Slade MA, Rice MS (2011) Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus 211:37–50CrossRefGoogle Scholar
  11. Harmon JK, Nolan MC, Husmann DI, Campbell BA (2012) Arecibo radar imagery of Mars: the major volcanic provinces. Icarus 220:990–1030CrossRefGoogle Scholar
  12. ITU (2014) Operational and technical characteristics and protection criteria of radio altimeters utilizing the band 4 200-4 400 MHz. Recommendation ITU-R M.2059-0. International Telecommunication Union, Geneva.Google Scholar
  13. Langhans MH, Jaumann R, Stephan K et al (2012) Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet Space Sci 60:34–51CrossRefGoogle Scholar
  14. Le Corre L, Le Mouélic S, Sotin C, Combe J-P, Rodriguez S et al (2009) Analysis of a cryolava flow-like feature on Titan. Planet Space Sci 57:870–879CrossRefGoogle Scholar
  15. Leberl F (1990) Radargrammetric image processing. Artech House, NorwoodGoogle Scholar
  16. Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley, New YorkGoogle Scholar
  17. Lorenz RD, Biolluz G, Encrenaz P, Janssen MA, West RD, Muhleman DO (2003) Cassini RADAR: prospects for Titan surface investigations using the microwave radiometer. Planet Space Sci 51:353–364CrossRefGoogle Scholar
  18. Meric S, Fayard F, Pottier E (2009) Radargrammetric SAR image processing. In: Pei-Gee Peter Ho (ed) Geoscience and remote sensing. InTech, Rijeka 598p doi:10.5772/46146Google Scholar
  19. Nunes DC, Phillips RJ (2006) Radar subsurface mapping of the polar layered deposits on Mars. J Geophys Res 111(E6), CiteID E06S21Google Scholar
  20. Ori GG, Di Lorenzo S, Ogliani F, Seu R, Biccari D (2002) The martian subsurface from the orbiting GPR MARSIS and SHARAD: detection and analysis of possible flood basalts. Lunar Planet Sci XXXIII, abstract #1503, HoustonGoogle Scholar
  21. Plaut JJ, Picardi G, Safaeinili A, Ivanov AB et al (2007) Subsurface radar sounding of the south polar layered deposits of Mars. Science 316(5821):92–95CrossRefGoogle Scholar
  22. Roth LE, Wall SD (eds) (1995) The face of Venus, NASA, SP-520. National Aeronautics and Space Administration, Washington, DCGoogle Scholar
  23. Sandia (2005) What is synthetic aperture radar? http://www.sandia.gov/radar/whatis.html
  24. Sandwell DT (2011) Radar altimetry. http://topex.ucsd.edu/rs/altimetry.pdf
  25. Sandwell DT, Smith WHF (nd) Exploring the ocean basins with satellite altimeter data. http://www.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML
  26. Schaber GG, Breed CS (1999) The importance of SAR wavelength in penetrating blown sand in northern Arizona. Remote Sens Environ 69(2):87–104. doi:10.1016/s0034-4257(99)00013-9CrossRefGoogle Scholar
  27. Seu R et al (2007) The SHAllow RADar (SHARAD) experiment, a subsurface sounding radar for MRO. Mem Soc Astron Ital Suppl 11:26–36Google Scholar
  28. Short NM (2005) The remote sensing tutorial. https://www.fas.org/irp/imint/docs/rst/
  29. Simpson RA, Harmon JK, Zosk SH, Thompson TW, Muhleman DO (1992) Radar determination of Mars surface properties. In: Kieffer HH et al (eds) Mars. University of Arizona Press, Tucson, pp 652–685Google Scholar
  30. Slade MA, Butler BJ, Muhleman DO (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640CrossRefGoogle Scholar
  31. Spudis PD et al (2013) Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar. J Geophys Res Planet 118. doi:10.1002/jgre.20156Google Scholar
  32. Stofan ER, Wall SD, Stiles BW, Kirk RL, West RD, Callahan PS (nd) Cassini RADAR users guide. NASA. http://pds-imaging.jpl.nasa.gov/documentation/Cassini_RADAR_Users_Guide.pdf
  33. Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L, Wood C, Zebker H, Wall S, Janssen M, Kirk R, Lopes R, Paganelli F, Radebaugh J, Wye L, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Paillou P, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Vetrella S, West R (2007) The lakes of Titan. Nature 445(7123):61–64CrossRefGoogle Scholar
  34. Tapley IJ (2002) Radar imaging. In: Papp É (ed) Geophysical and remote sensing methods for regolith exploration, CRC LEME open file report, 144. CRC LEME, Bentley, pp 22–32Google Scholar
  35. Wolff C (2012) Synthetic aperture radar. http://www.radartutorial.eu/20.airborne/ab07.en.html. Accessed 22 Nov 2012
  36. Young C (ed) (1990) The Magellan Venus explorer’s guide. JPL Publication, PasadenaGoogle Scholar
  37. Zuber MT, Phillips RJ, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Plaut JJ, Smith DE, Smrekar SE (2007) Density of Mars’ south polar layered deposits. Science 317(5845):1718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Henrik Hargitai
    • 1
  • Ákos Kereszturi
    • 2
  • Flora Paganelli
    • 3
  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  3. 3.Spatial Sciences Institute, Allan Hancock FoundationUniversity of Southern CaliforniaLos AngelesUSA