Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Caldera

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_29

Definition

These are large, quasi-circular, volcanic depressions with diameters considerably larger than any included vent, with diameters greater than 1 km on Earth and greater than 10 km for planetary calderas (Mouginis-Mark and Rowland 2001). These landforms result from paroxysmal explosions and/or gravitational collapse into an evacuated or partially drained near-surface magma storage complex or magma chamber. Smaller ones (i.e., on Earth, those that have diameters less than 1 km) are classified as pit craters (Williams and McBirney 1979; Walker 1988; Mouginis-Mark and Rowland 2001). Calderas on Venus are defined to be “circular to elongate depressions characterized mainly by concentric pattern of enveloping fractures and other geologic characteristics indicative of a depression” (Head et al. 1992; Crumpler et al. 1997), similar to calderas as defined on Earth.

Synonyms

Cauldron; Patera

Description

These are quasi-circular volcanic depressions bounded by concentric ring faults.

Morphometry...

This is a preview of subscription content, log in to check access

References

  1. Acocella V (2007) Understanding caldera structure and development: an overview of analog models compared to natural calderas. Earth Sci Rev 85:125–160CrossRefGoogle Scholar
  2. Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcanol Geotherm Res 104(1):81–96CrossRefGoogle Scholar
  3. Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade range. USA J Volcanol Geotherm Res 18:57–115CrossRefGoogle Scholar
  4. Basilevsky AT, Nikolaeva OV, Weitz CM (1992) Geology of the Venera 8 landing site region from Magellan data: morphological and geochemical considerations. J Geophys Res 97(E10):16315–16335. doi:10.1029/92JE01557CrossRefGoogle Scholar
  5. Bates RL, Jackson JA (1995) Glossary of geology. Americal Geological Institute, AlexandriaGoogle Scholar
  6. Carr MH (1973) Volcanism on Mars. J Geophys Res 78:4049–4062CrossRefGoogle Scholar
  7. Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26CrossRefGoogle Scholar
  8. Crumpler LS, Aubele JC (2000) Volcanism on Venus. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 727–769Google Scholar
  9. Crumpler LS, Head JW, Aubele JC (1996) Calderas on Mars: characteristics, structure, and associated flank deformation. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the earth and other planets, Geological Society, London, Special Publications, 110(1), 307–348Google Scholar
  10. Crumpler LS, Aubele JC, Senske DA, Keddie ST, Magee KP, Head JW (1997) Volcanoes and centers of volcanism on Venus. In: Bougher SW et al (eds) Venus II: geology, geophysics atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 697–756Google Scholar
  11. De Silva SL (1989) Altiplano-Puna volcanic complex of the Central Andes. Geology 17:1102–1106CrossRefGoogle Scholar
  12. Decker RW (1987) Dynamics of Hawaiian volcanoes: an overview. Volcanism in Hawaii. US Geol Surv Prof Pap 1350:997–1018Google Scholar
  13. Druitt TH, Sparks RS (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681CrossRefGoogle Scholar
  14. Ernst RE, Desnoyers DW (2004) Lessons from Venus for understanding mantle plumes on earth. Phys Earth Planet Inter 146:195–229CrossRefGoogle Scholar
  15. Frankel C (2005) Worlds on fire: volcanoes on the Earth, the Moon, Mars, Venus, and Io. Cambridge University Press, Cambridge, 358 ppGoogle Scholar
  16. Geshi N, Shimano T, Chiba T, Nakada S (2002) Caldera collapse during the 2000 eruption of Miyakejima volcano. Jpn Bull Volcanol 64:55–68CrossRefGoogle Scholar
  17. Geyer A, Martí J (2008) The new worldwide collapse caldera database (CCDB): a tool for studying and understanding caldera processes. J Volcanol Geotherm Res 175(3):334–354CrossRefGoogle Scholar
  18. Gregg PM, De Silva SL, Grosfils EB, Parmigiani JP (2012) Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J Volcanol Geotherm Res 241:1–12CrossRefGoogle Scholar
  19. Grosfils E (2011) New mechanical insights into ring fault initiation and caldera formation on terrestrial planets. Lunar Planet Sci Conf XLII:1170, HoustonGoogle Scholar
  20. Gudmundsson A (1988) Formation of collapse calderas. Geology 16:808–810CrossRefGoogle Scholar
  21. Hartmann WK, Raper O (1974) The new Mars: the discoveries of mariner 9. NASA special publication, 337. NASA. Washington, DCGoogle Scholar
  22. Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS (1992) Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97(E8):13153–13197CrossRefGoogle Scholar
  23. Klingelhaufer G, Morris RV, Bernhardt B et al (2004) Mossbauer spectroscopy of soils and rocks at Gusev Crater and Meridiani Planum. Abstracts of papers submitted to the 35th lunar and planetary science conference. Lunar and Planetary Institute, Houston, CD 35, abstract #2184Google Scholar
  24. Krassilnikov AS, Head JW (2003) Calderas on Venus and Earth (I). Planet Earth: overview of calderas. Microsymposium 38:MS051Google Scholar
  25. Lipman PW (1995) Subsidence of ash-flow calderas; role of magma chamber geometry. IUGG Gen Assem 21(Week A):452Google Scholar
  26. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma chamber geometry. Bull Volcanol 59:198–218CrossRefGoogle Scholar
  27. Lipman PW (2000) Calderas. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Francisco, pp 643–662Google Scholar
  28. Martì J, Ablay GJ, Redshaw LT, Sparks RSJ (1994) Experimental studies of collapse calderas. J Geol Soc Lond 151:919–929CrossRefGoogle Scholar
  29. McSween HY, Grove TL, Wyatt MB (2003) Constraints on the composition and petrogenesis of the Martian crust. J Geophys Res. doi:10.1029/2003JE002175Google Scholar
  30. Mouginis-Mark PJ, Rowland SK (2001) The geomorphology of planetary calderas. Geomorphology 37:201–223CrossRefGoogle Scholar
  31. Mouginis-Mark PJ, Wilson L, Zuber MT (1992) In: Jakowsky BM, Kieffer HH, Matthews MS (eds) The physical volcanology of Mars in Mars. University of Arizona Press, Tucson, p 424Google Scholar
  32. Mouginis-Mark PJ, Harris AJL, Rowland SK (2007) Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. In: Chapman M (ed) The geology of Mars, evidence from Earth-based analogs. Cambridge University Press, New York, p 460Google Scholar
  33. Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world, U.S. Geological Survey bulletin, 1855. U.S. Geological Survey, Reston, 1109 ppGoogle Scholar
  34. Pace KR, Krassilnikov AS (2003) Calderas on Venus: tectonics, volcanism, and relationship with regional plains. Lunar Planet Sci Conf XXXIV:1309, HoustonGoogle Scholar
  35. Radebaugh J, Keszthelyi LP, McEwen AS, Turtle EP, Jaeger W, Milazzo M (2001) Paterae on Io: a new type of volcanic caldera? J Geophys Res 106:33005–33020CrossRefGoogle Scholar
  36. Rampino MR, Stothers RB (1988) Flood basalt volcanism during the past 250 million years. Science 241:663–668CrossRefGoogle Scholar
  37. Robbins SJ, Di Achille G, Hynek BM (2011) The volcanic history of Mars: high-resolution crater-based study of the calderas of twenty volcanoes. Icarus 211:1179–1203. doi:10.1016/j.icarus.2010.11.012CrossRefGoogle Scholar
  38. Roche O, Druitt TH, Merle O (2000) Experimental study of caldera formation. J Geophys Res 105(B1):395–416CrossRefGoogle Scholar
  39. Schenk PM, Bulmer MH (1998) Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279:1514–1517CrossRefGoogle Scholar
  40. Schenk PM, Wilson RR, Davies AG (2004) Shield volcano topography and the rheology of lava flows on Io. Icarus 169:98–110CrossRefGoogle Scholar
  41. Self S, Goff E, Gardner JN, Wright JV, Kite WM (1986) Explosive rhyolitic volcanism in the Jemez Mountains: vent locations, caldera development and relation to regional structure. J Geophys Res 91:1779–1798CrossRefGoogle Scholar
  42. Smith RL, Bailey RA, Ross CS (1961) Structural evolution of the Valles caldera, New Mexico, and its bearing on the emplacement of ring dikes. US Geol Surv Prof Pap 424:145–149Google Scholar
  43. Stofan ER, Guest JE, Copp DL (2001) Development of large volcanoes on Venus: constraints from Sif, Gula, and Kunapipi Montes. Icarus 152:75–95CrossRefGoogle Scholar
  44. Walker GPL (1984) Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J Geophys Res 89(B10):8407–8416. doi:10.1029/JB089iB10p08407CrossRefGoogle Scholar
  45. Walker GPL (1988) Three Hawaiian calderas: origin through loading by shallow intrusions? J Geophys Res 93:14773–14784CrossRefGoogle Scholar
  46. Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33CrossRefGoogle Scholar
  47. Williams H (1941) Calderas and their origin. Bull Dep Geol Sci Univ Calif 21:239–346Google Scholar
  48. Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper, San Francisco/Berkeley, p 397Google Scholar
  49. Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE, Becker TL (2011) Volcanism on Io: new insights from global geologic mapping. Icarus 214:91–112CrossRefGoogle Scholar
  50. Wood CA (1984) Calderas – a planetary perspective. J Geophys Res 89:8391–8406CrossRefGoogle Scholar
  51. Zimbelman JR, Edgett KS (1992) Volcanic and modified landforms on the tharsis Montes, Mars. Lunar Planet Sci Conf XXIII:1581–1582, HoustonGoogle Scholar
  52. Zuber MT, Mouginis-Mark PJ (1992) Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars. J Geophys Res 97(B11):18295–18307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Lunar and Planetary InstituteUSRAHoustonUSA