Skip to main content

Caldera

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 93 Accesses

Definition

These are large, quasi-circular, volcanic depressions with diameters considerably larger than any included vent, with diameters greater than 1 km on Earth and greater than 10 km for planetary calderas (Mouginis-Mark and Rowland 2001). These landforms result from paroxysmal explosions and/or gravitational collapse into an evacuated or partially drained near-surface magma storage complex or magma chamber. Smaller ones (i.e., on Earth, those that have diameters less than 1 km) are classified as pit craters (Williams and McBirney 1979; Walker 1988; Mouginis-Mark and Rowland 2001). Calderas on Venus are defined to be “circular to elongate depressions characterized mainly by concentric pattern of enveloping fractures and other geologic characteristics indicative of a depression” (Head et al. 1992; Crumpler et al. 1997), similar to calderas as defined on Earth.

Synonyms

Cauldron; Patera

Description

These are quasi-circular volcanic depressions bounded by concentric ring faults.

Morphometry...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acocella V (2007) Understanding caldera structure and development: an overview of analog models compared to natural calderas. Earth Sci Rev 85:125–160

    Article  Google Scholar 

  • Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcanol Geotherm Res 104(1):81–96

    Article  Google Scholar 

  • Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade range. USA J Volcanol Geotherm Res 18:57–115

    Article  Google Scholar 

  • Basilevsky AT, Nikolaeva OV, Weitz CM (1992) Geology of the Venera 8 landing site region from Magellan data: morphological and geochemical considerations. J Geophys Res 97(E10):16315–16335. doi:10.1029/92JE01557

    Article  Google Scholar 

  • Bates RL, Jackson JA (1995) Glossary of geology. Americal Geological Institute, Alexandria

    Google Scholar 

  • Carr MH (1973) Volcanism on Mars. J Geophys Res 78:4049–4062

    Article  Google Scholar 

  • Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26

    Article  Google Scholar 

  • Crumpler LS, Aubele JC (2000) Volcanism on Venus. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 727–769

    Google Scholar 

  • Crumpler LS, Head JW, Aubele JC (1996) Calderas on Mars: characteristics, structure, and associated flank deformation. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the earth and other planets, Geological Society, London, Special Publications, 110(1), 307–348

    Google Scholar 

  • Crumpler LS, Aubele JC, Senske DA, Keddie ST, Magee KP, Head JW (1997) Volcanoes and centers of volcanism on Venus. In: Bougher SW et al (eds) Venus II: geology, geophysics atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 697–756

    Google Scholar 

  • De Silva SL (1989) Altiplano-Puna volcanic complex of the Central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • Decker RW (1987) Dynamics of Hawaiian volcanoes: an overview. Volcanism in Hawaii. US Geol Surv Prof Pap 1350:997–1018

    Google Scholar 

  • Druitt TH, Sparks RS (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681

    Article  Google Scholar 

  • Ernst RE, Desnoyers DW (2004) Lessons from Venus for understanding mantle plumes on earth. Phys Earth Planet Inter 146:195–229

    Article  Google Scholar 

  • Frankel C (2005) Worlds on fire: volcanoes on the Earth, the Moon, Mars, Venus, and Io. Cambridge University Press, Cambridge, 358 pp

    Google Scholar 

  • Geshi N, Shimano T, Chiba T, Nakada S (2002) Caldera collapse during the 2000 eruption of Miyakejima volcano. Jpn Bull Volcanol 64:55–68

    Article  Google Scholar 

  • Geyer A, Martí J (2008) The new worldwide collapse caldera database (CCDB): a tool for studying and understanding caldera processes. J Volcanol Geotherm Res 175(3):334–354

    Article  Google Scholar 

  • Gregg PM, De Silva SL, Grosfils EB, Parmigiani JP (2012) Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J Volcanol Geotherm Res 241:1–12

    Article  Google Scholar 

  • Grosfils E (2011) New mechanical insights into ring fault initiation and caldera formation on terrestrial planets. Lunar Planet Sci Conf XLII:1170, Houston

    Google Scholar 

  • Gudmundsson A (1988) Formation of collapse calderas. Geology 16:808–810

    Article  Google Scholar 

  • Hartmann WK, Raper O (1974) The new Mars: the discoveries of mariner 9. NASA special publication, 337. NASA. Washington, DC

    Google Scholar 

  • Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS (1992) Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97(E8):13153–13197

    Article  Google Scholar 

  • Klingelhaufer G, Morris RV, Bernhardt B et al (2004) Mossbauer spectroscopy of soils and rocks at Gusev Crater and Meridiani Planum. Abstracts of papers submitted to the 35th lunar and planetary science conference. Lunar and Planetary Institute, Houston, CD 35, abstract #2184

    Google Scholar 

  • Krassilnikov AS, Head JW (2003) Calderas on Venus and Earth (I). Planet Earth: overview of calderas. Microsymposium 38:MS051

    Google Scholar 

  • Lipman PW (1995) Subsidence of ash-flow calderas; role of magma chamber geometry. IUGG Gen Assem 21(Week A):452

    Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Lipman PW (2000) Calderas. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Francisco, pp 643–662

    Google Scholar 

  • Martì J, Ablay GJ, Redshaw LT, Sparks RSJ (1994) Experimental studies of collapse calderas. J Geol Soc Lond 151:919–929

    Article  Google Scholar 

  • McSween HY, Grove TL, Wyatt MB (2003) Constraints on the composition and petrogenesis of the Martian crust. J Geophys Res. doi:10.1029/2003JE002175

    Google Scholar 

  • Mouginis-Mark PJ, Rowland SK (2001) The geomorphology of planetary calderas. Geomorphology 37:201–223

    Article  Google Scholar 

  • Mouginis-Mark PJ, Wilson L, Zuber MT (1992) In: Jakowsky BM, Kieffer HH, Matthews MS (eds) The physical volcanology of Mars in Mars. University of Arizona Press, Tucson, p 424

    Google Scholar 

  • Mouginis-Mark PJ, Harris AJL, Rowland SK (2007) Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. In: Chapman M (ed) The geology of Mars, evidence from Earth-based analogs. Cambridge University Press, New York, p 460

    Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world, U.S. Geological Survey bulletin, 1855. U.S. Geological Survey, Reston, 1109 pp

    Google Scholar 

  • Pace KR, Krassilnikov AS (2003) Calderas on Venus: tectonics, volcanism, and relationship with regional plains. Lunar Planet Sci Conf XXXIV:1309, Houston

    Google Scholar 

  • Radebaugh J, Keszthelyi LP, McEwen AS, Turtle EP, Jaeger W, Milazzo M (2001) Paterae on Io: a new type of volcanic caldera? J Geophys Res 106:33005–33020

    Article  Google Scholar 

  • Rampino MR, Stothers RB (1988) Flood basalt volcanism during the past 250 million years. Science 241:663–668

    Article  Google Scholar 

  • Robbins SJ, Di Achille G, Hynek BM (2011) The volcanic history of Mars: high-resolution crater-based study of the calderas of twenty volcanoes. Icarus 211:1179–1203. doi:10.1016/j.icarus.2010.11.012

    Article  Google Scholar 

  • Roche O, Druitt TH, Merle O (2000) Experimental study of caldera formation. J Geophys Res 105(B1):395–416

    Article  Google Scholar 

  • Schenk PM, Bulmer MH (1998) Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279:1514–1517

    Article  Google Scholar 

  • Schenk PM, Wilson RR, Davies AG (2004) Shield volcano topography and the rheology of lava flows on Io. Icarus 169:98–110

    Article  Google Scholar 

  • Self S, Goff E, Gardner JN, Wright JV, Kite WM (1986) Explosive rhyolitic volcanism in the Jemez Mountains: vent locations, caldera development and relation to regional structure. J Geophys Res 91:1779–1798

    Article  Google Scholar 

  • Smith RL, Bailey RA, Ross CS (1961) Structural evolution of the Valles caldera, New Mexico, and its bearing on the emplacement of ring dikes. US Geol Surv Prof Pap 424:145–149

    Google Scholar 

  • Stofan ER, Guest JE, Copp DL (2001) Development of large volcanoes on Venus: constraints from Sif, Gula, and Kunapipi Montes. Icarus 152:75–95

    Article  Google Scholar 

  • Walker GPL (1984) Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J Geophys Res 89(B10):8407–8416. doi:10.1029/JB089iB10p08407

    Article  Google Scholar 

  • Walker GPL (1988) Three Hawaiian calderas: origin through loading by shallow intrusions? J Geophys Res 93:14773–14784

    Article  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Williams H (1941) Calderas and their origin. Bull Dep Geol Sci Univ Calif 21:239–346

    Google Scholar 

  • Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper, San Francisco/Berkeley, p 397

    Google Scholar 

  • Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE, Becker TL (2011) Volcanism on Io: new insights from global geologic mapping. Icarus 214:91–112

    Article  Google Scholar 

  • Wood CA (1984) Calderas – a planetary perspective. J Geophys Res 89:8391–8406

    Article  Google Scholar 

  • Zimbelman JR, Edgett KS (1992) Volcanic and modified landforms on the tharsis Montes, Mars. Lunar Planet Sci Conf XXIII:1581–1582, Houston

    Google Scholar 

  • Zuber MT, Mouginis-Mark PJ (1992) Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars. J Geophys Res 97(B11):18295–18307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Galgana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Galgana, G.A. (2015). Caldera. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_29

Download citation

Publish with us

Policies and ethics