Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Pyroclastic Deposits

  • Justin FilibertoEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_284


Pyroclastic rocks are “fragmental volcanic products in which the fragmentation of lava or rock and the ejection of the fragments from the vent are both due to explosive volcanic activity” (Sparks and Walker 1973).


A type of  volcaniclastic deposit.


Tephra (ash, Greek) (Thorarinsson 1954)

Subtypes of Pyroclasts by Particle Size

On Earth if the deposits have >75 % of grains <2 mm, it is ash (or tuff, if consolidated); if 2–64 mm, it is lapilli (if consolidated: lapillistone); if >64 mm, they are blocks (or bombs) (if consolidated: breccia) (Busby et al. 2006).

Subtypes based on mode of transportation (Fig. 1):
This is a preview of subscription content, log in to check access.


  1. Alloway BV, Larsen G, Lowe DJ, Shane PAR, Westgate JA (2007) Tephrochronology. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, London, pp 2869–2898CrossRefGoogle Scholar
  2. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187CrossRefGoogle Scholar
  3. Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218(1):88–99. doi:10.1016/j.icarus.2011.11.030CrossRefGoogle Scholar
  4. Busby C, Adams BF, Mattinson J, Deoreo S (2006) View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California. J Volcanol Geotherm Res 149:1–46CrossRefGoogle Scholar
  5. Carlson RH, Roberts WA (1963) Project Sedan mass distribution and throwout, PNE-217F. The Boeing Company, SeattleGoogle Scholar
  6. Carter LM, Campbell BA, Hawke BR, Campbell DB, Nolan MC (2009) Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon. J Geophys Res Planet 114(E11). doi:10.1029/2009je003406Google Scholar
  7. Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen and Unwin, LondonCrossRefGoogle Scholar
  8. Crown DA, Greeley R (1993) Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J Geophys Res 98(E2):3431–3451. doi:10.1029/92je02804CrossRefGoogle Scholar
  9. Degruyter W, Manga M (2011) Cryoclastic origin of particles on the surface of Enceladus. Geophys Res Lett 38:L16201. doi:10.1029/2011GL048235CrossRefGoogle Scholar
  10. Edgar LA, Grotzinger JP, Southard JB, Ewing RC, Lamb MP (2012) Criteria for the identification of pyroclastic surge deposits on mars: insight from Hunt’s Hole, New Mexico. 43rd Lunar Planet Sci Conf, abstract #2638, HoustonGoogle Scholar
  11. Filiberto J, Gross J, Treiman AH (2010) Basaltic pyroclastic deposits on Earth and Mars: constraints for robotic exploration of martian pyroclastic deposits. 41st Lunar Planet Sci Conf, abstract #1936, HoustonGoogle Scholar
  12. Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens. Wash Geol Soc Am Bull 102:1038–1054CrossRefGoogle Scholar
  13. Gaddis LR, Staid MI, Tyburczy JA, Hawke BR, Petro NE (2003) Compositional analyses of lunar pyroclastic deposits. Icarus 161:262–280CrossRefGoogle Scholar
  14. Glasstone S, Dolan PJ (1977) The effects of nuclear weapons, 3rd edn. US. Department of Defense and U.S. Energy Research Development Administration, U.S. Government Printing Office, Washington, DCGoogle Scholar
  15. Green DH, Ringwood AE (1974) Significance of a primitive lunar basaltic composition present in Apollo 15 soils and breccias. Earth Planet Sci Lett 19(1):1–8CrossRefGoogle Scholar
  16. Gregg TKP, Farley MA (2006) Mafic pyroclastic flows at Tyrrhena Patera, Mars: constraints from observations and models. J Volcanol Geotherm Res 155(1–2):81–89CrossRefGoogle Scholar
  17. Heiken GH, McKay DS (1974) Petrology of Apollo 17 soils. 5th Lunar Planet Sci, 843–860, HoustonGoogle Scholar
  18. Hiesinger H, Head JW III (2004) The Syrtis Major volcanic province, Mars: synthesis from Mars Global Surveyor data. J Geophys Res 109:E01004. doi:10.1029/2003JE002143Google Scholar
  19. Kerber L, Head JW, Madeleine J-B, Forget F, Wilson L (2011a) The dispersal of pyroclasts from Apollinaris Patera, Mars: implications for the origin of the Medusae Fossae Formation. Icarus 216(1):212–220. doi:10.1016/j.icarus.2011.07.035CrossRefGoogle Scholar
  20. Kerber L, Head JW, Blewett DT, Solomon SC, Wilson L et al (2011b) The global distribution of pyroclastic deposits on Mercury: the view from MESSENGER flybys 1–3. Planet Space Sci 59:1895–1909CrossRefGoogle Scholar
  21. Kerber L, Head JW, Madeleine J-B, Forget F, Wilson L (2012) The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219(1):358–381. doi:10.1016/j.icarus.2012.03.016CrossRefGoogle Scholar
  22. Kieffer SW (1981) Fluid dynamics of the May 18 blast at Mount St. Helens. US Geol Surv Prof Pap 1250:379–400Google Scholar
  23. Kobayashi T, Okuno M (2003) The mode of eruptions and their tephra deposits. Glob Environ Res 6(2):29–36Google Scholar
  24. Kokelaar P, Busby C (1992) Subaqueous explosive eruption and welding of pyroclastic deposits. Science 257:196–201CrossRefGoogle Scholar
  25. Meyer C (2004) 15425–15427, 15365–15377, Green Glass Clods. Lunar Sample Compend, manuscriptGoogle Scholar
  26. Meyer C (2010) 74220 Soil (or clod). Lunar Sample CompendGoogle Scholar
  27. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294CrossRefGoogle Scholar
  28. Rava B, Hapke B (1987) An analysis of the Mariner 10 color ratio map of Mercury. Icarus 71:397–429CrossRefGoogle Scholar
  29. Sparks RSJ, Walker GPL (1973) The ground surge deposit: a third type of pyroclastic rock. Nature 241:62–64CrossRefGoogle Scholar
  30. Squyres SW, Arvidson RE, Blaney DL, Clark BC, Crumpler L, Farrand WH, Gorevan S, Herkenhoff KE, Hurowitz J, Kusack A, McSween HY, Ming DW, Morris RV, Ruff SW, Wang A, Yen A (2006) Rocks of the Columbia Hills. J Geophys Res 111:E02S11. doi:10.1029/2005je002562Google Scholar
  31. Squyres SW, Aharonson O, Clark BC, Cohen BA, Crumpler LS, de Souza PA, Farrand W, Gellert R, Grant J, Grotzinger G, Haldemann A, Johnson JR, Klingelhoefer G, Lewis JS, Li R, McCoy TJ, McEwen A, McSween HY, Ming D, Moore JM, Morris RV, Parker TJ, Rice JW, Ruff SW, Schmidt ME, Schroder C, Soderblom L, Yen A (2007) Pyroclastic activity at Home Plate in Gusev Crater, Mars. Science 316:738–742CrossRefGoogle Scholar
  32. Thorarinsson S (1954) The tephra fall from Hekla on March 29th, 1947, vol 2(3), The eruption of Hekla 1947–1948. H. F. Leiftur, Reykjavik, pp 1–78Google Scholar
  33. Usui T, McSween HY Jr, Clark BC III (2008) Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. J Geophys Res 113:E12S44. doi:10.1029/2008JE003225Google Scholar
  34. Wilson L, Head JW (2007) Explosive volcanic eruptions on Mars: tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. J Volcanol Geotherm Res 163(1–4):83–97CrossRefGoogle Scholar
  35. Wilson L, Head JW (2008) Tephra deposition on glaciers and ice sheets on Mars: influence on ice survival, debris content and flow behavior. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.20 08.10.0 03Google Scholar
  36. Wilson L, Sparks RSJ, Huang TC, Watkins ND (1978) The control of volcanic column heights by eruption energetics and dynamics. J Geophys Res 83(B4):1829–1836CrossRefGoogle Scholar
  37. Wohletz KH (1998) Pyroclastic surges and compressible two-phase flow. In: Freundt A, Rosi M (eds) From magma to tephra. Elsevier, Amsterdam, pp 247–312Google Scholar
  38. Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413CrossRefGoogle Scholar
  39. Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8(2–4):315–336CrossRefGoogle Scholar
  40. Young GA (1965) The physics of the base surge. U.S. Naval Ordnance Lab NOLTR 64–103, AD-618733, White OakGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of GeologySouthern Illinois University CarbondaleCarbondaleUSA