Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Pyroclastic Cone

  • Petr BrožEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_283


Cone formed by the accumulation of pyroclastic deposits (Wood 1979b); a morphologically wide group of different volcanic landforms. The term pyroclastic cone is also used in the strict sense for  cinder cones (e.g., Kervyn et al. 2012).


Features associated with central pit craters, which formed by the explosive ejection of pyroclastic material from vents and central craters (Head 1975). Typically range from a few tens of meters to few hundreds in height with cone diameters up to several kilometers (Wood 1979b; Brož and Hauber 2012 and references therein); however, morphological properties between different types of pyroclastic cones are significantly variable depending on the formation mechanism (Wood 1979b; Wohletz and Sheridan 1983). Typically terrestrial volcanic fields of pyroclastic cones are formed by several different types of cones overlapping each other (e.g., Pinacate Volcanic Field in Mexico, cinder cones, tuff rings, and maars).



This is a preview of subscription content, log in to check access.


  1. Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New YorkGoogle Scholar
  2. Bleacher JE, Greeley R, Williams DA, Cave SR, Neukum G (2007) Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J Geophys Res 112, E09005. doi:10.1029/2006JE002873Google Scholar
  3. Bridges JC et al (2003) Selection of the landing site in Isidis Planitia of Mars probe Beagle 2. J Geophys Res 108(E1):5001. doi:10.1029/2001JE001820CrossRefGoogle Scholar
  4. Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218:88–99. doi:10.1016/j.icarus.2011.11.030CrossRefGoogle Scholar
  5. Brož P, Hauber E (2013) Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J Geophys Res Planets 118:1656–1675. doi:10.1002/jgre.20120Google Scholar
  6. Bruno BC, Fagents SA, Hamilton CW, Burr DM, Baloga SM (2006) Identification of volcanic rootless cones, ice mounds, and impact craters on Earth and Mars: using spatial distribution as a remote sensing tool. J Geophys Res 111, E06017. doi:10.1029/2005JE002510Google Scholar
  7. Gaddis RL, Klem S, Gustafson JO, Hawke BR, Giguere TA (2011) Alphonsus dark-halo craters: identification of additional volcanic vents. 42nd Lunar Planet Sci Conf, abstract #2691, HoustonGoogle Scholar
  8. Head JW (1975) Morphology of pyroclastic lunar volcanic deposits: implications for eruption conditions and localized sources of volatiles. Lunar Planet Sci Conf VI:349–351, HoustonGoogle Scholar
  9. Kervyn M, Ernst GGJ, Carracedo J-C, Jacobs P (2012) Geomorphometric variability of “monogenetic” volcanic cones: evidence from Mauna Kea, Lanzarote and experimental cones. Geomorphology. doi:10.1016/j.geomorph.2011.04.009Google Scholar
  10. Keszthelyi L et al (2008) High Resolution Imaging Science Experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars Reconnaissance Orbiter primary science phase. J Geophys Res 113, E04005. doi:10.1029/2007JE002968Google Scholar
  11. Lanz JK, Wagner R, Wolf U, Kröchert J, Neukum G (2010) Rift zone volcanism and associated cinder cone field in Utopia Planitia. Mars J Geophys Res 115, E12019. doi:10.1029/2010JE003578CrossRefGoogle Scholar
  12. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274. doi:10.1007/BF01081755CrossRefGoogle Scholar
  13. Meresse S, Costard F, Mangold N, Masson P, Neukum G, the HRSC Co-I Team (2008) Formation and evolution of the chaotic terrains by subsidence and magmatism: Hydraotes Chaos, Mars. Icarus 194:487–500. doi:10.1016/j.icarus.2007.10.023CrossRefGoogle Scholar
  14. Parfitt E (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geoth Res 134:77–107. doi:10.1016/j.jvolgeores. 2004.01.002CrossRefGoogle Scholar
  15. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29. doi:10.1016/0377-0273(83)90060-4CrossRefGoogle Scholar
  16. White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi:10.1016/j.jvolgeores.2011.01.010CrossRefGoogle Scholar
  17. Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Amer J Sci 283:385–413CrossRefGoogle Scholar
  18. Wood CA (1979a) Cinder cones on Earth, Moon and Mars. Lunar Planet Sci X:1370–1371, HoustonGoogle Scholar
  19. Wood CA (1979b) Monogenetic volcanoes of the terrestrial planets. Lunar Planet Sci Conf 10:2815–2840, HoustonGoogle Scholar
  20. Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160. doi:10.1016/0377-0273(80)90101-8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Geophysics, Academy of Sciences of the Czech RepublicPragueCzech Republic