Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Aeolian Dust Deposits

  • Steven W. RuffEmail author
  • Alexey A. Pankine
  • Gabriella Barta
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_2


A sedimentary deposit produced from the finest (silt-sized) fraction of planetary regolith that is carried in suspension and distributed by atmospheric activity.



Aeolian dust deposits are distinguished from other aeolian deposits by their composition of dust-sized particles (diameters smaller than 62.5 μm) transported via atmospheric suspension rather than sand-sized particles (62.5–2,000 μm) transported via creep, reptation, or saltation, which create dunes or ripples. On Mars they cover continent-sized regions that are recognized by their relatively high-albedo (>0.27) and low-thermal inertia properties (<100 Jm −2 s −1/2 K −1) indicative of uncemented particles in the size range 2–40 μm Christensen ( 1986) (Fig. 1).
This is a preview of subscription content, log in to check access.


  1. Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301:1084–1086CrossRefGoogle Scholar
  2. Barta G (2011) Secondary carbonates in loess-paleosoil sequences: a general review. Cent Eur J Geosci 3(2):129–146Google Scholar
  3. Bates RL, Jackson JA (1995) Glossary of geology, 3rd edn. American Geological Institute, AlexandriaGoogle Scholar
  4. Becze-Deák J, Langohr R, Verrecchia EP (1997) Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction. Geoderma 76:221–252CrossRefGoogle Scholar
  5. Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404CrossRefGoogle Scholar
  6. Bridges NT, Muhs DR (2012) Duststones on Mars: source, transport, deposition, and erosion. In: Grotzinger JP, Milliken RE (eds) Sedimentary geology of Mars, Special publication no. 11. Society for Sedimentary Geology, Tulsa, pp 169–183Google Scholar
  7. Cain JR (2010) Lunar dust: the hazard and astronaut exposure risk. Earth Moon Planets 107(1):107–125CrossRefGoogle Scholar
  8. Christensen PR (1986) Regional dust deposits on Mars: physical properties, age, and history. J Geophys Res 91:3533–3545CrossRefGoogle Scholar
  9. Christensen PR, Bandfield JL, Hamilton VE, Ruff SW, Kieffer HH, Titus TN, Malin MC, Morris RV, Lane MD, Clark RL, Jakosky BM, Mellon MT, Pearl JC, Conrath BJ, Smith MD, Clancy RT, Kuzmin RO, Roush T, Mehall GL, Gorelick N, Bender K, Murray K, Dason S, Greene E, Silverman S, Greenfield M (2001) Mars global surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J Geophys Res 106(E10):23,823–23,871CrossRefGoogle Scholar
  10. Cilek V (2001) The loess deposits of the Bohemian Massif: silt provenance, palaeometeorology and loessification processes. Quat Int 76(77):123–128CrossRefGoogle Scholar
  11. Edmondson KM, Fetzer C, Karam NH, Stella P, Mardesich N, Mueller R (2007) Multijunction solar cells optimized for the Mars surface solar spectrum. 20th Space Photovoltaic Research and Technology (SPRAT), Cleveland, 25–27 SeptGoogle Scholar
  12. Garvin JB (1984) Dust on Venus: geological implications Lunar Planet Sci Conf XV:286–287, HoustonGoogle Scholar
  13. Greeley R, Iversen JD (1987) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, New YorkGoogle Scholar
  14. Grotzinger JP, Milliken RE (2012) The sedimentary rock record of mars: distribution, origins, and global stratigraphy. In: Sedimentary geology of Mars. Special publication no. 11, pp 1–48Google Scholar
  15. Guest JE, Bulmer MH, Aubele JC (1992) Small volcanic edifices and volcanism in the plains of Venus. J Geophys Res 97:15949–15966CrossRefGoogle Scholar
  16. Johnson JB, Lorenz RD (2000) Thermophysical properties of Alaskan loess: an analog material for the Martian polar layered terrain? Geophys Res Lett 27(17):2769–2772CrossRefGoogle Scholar
  17. Kreslavsky MA (2009) Surficial deposits and access to materials with known geological context on Venus. Venus geochemistry: progress, prospects, and new missions #2019, HoustonGoogle Scholar
  18. Laity JE, Bridges NT (2009) Ventifacts on Earth and Mars: analytical, field, and laboratory studies supporting sand abrasion and windward feature development. Geomorphology 105:202–217CrossRefGoogle Scholar
  19. Landis GA, Blaney D, Cabrol N, Clark BC, Farmer J, Grotzinger J, Greeley R, MxLennan SM, Richter L (2004) Transient liquid water as a mechanism for induration of soil crusts on Mars. Lunar Planet Sci Conf XXXV, abstract #2188, HoustonGoogle Scholar
  20. Landis GA, Herkenhoff K, Greeley R, Thompson S, Whelley P et al (2006) Dust and sand deposition on the MER solar arrays as viewed by the microscopic imager. Lunar Planet Sci Conf, 37, abstract #1932, HoustonGoogle Scholar
  21. Laskar J, Levrard B, Mustard JF (2002) Orbital forcing of the Martian polar layered deposits. Nature 419:375–377CrossRefGoogle Scholar
  22. Lemmon MT, Wolff MJ, Smith MD, Clancy RT, Banfield D et al (2004) Atmospheric imaging results from the Mars exploration rovers: spirit and opportunity. Science 360:1753–1756CrossRefGoogle Scholar
  23. Leovy C (2001) Weather and climate on Mars. Nature 412:245–249CrossRefGoogle Scholar
  24. Lorenz RD, Lunine JI, Grier JA, Fisher MA (1995) Prediction of aeolian features on planets: application to Titan paleoclimatology. J Geophys Res 100(E12):26377–26386CrossRefGoogle Scholar
  25. Mangold N, Ansan V, Masson P, Vincendon C (2009) Estimate of aeolian dust thickness in Arabia Terra, Mars: implications of a thick mantle (>20 m) for hydrogen detection. Géomorphologie 1:23–32CrossRefGoogle Scholar
  26. Muhs DR, Budahn JR (2006) Geochemical evidence for the origin of late quaternary loess in central Alaska. Can J Earth Sci 43:323–337CrossRefGoogle Scholar
  27. Pankine AA, Ingersoll AP (2004) Interannual variability of Mars global dust storms: an example of self-organized criticality? Icarus 170(2):514–518CrossRefGoogle Scholar
  28. Pécsi M (1990) Loess is not just accumulation of airborne dust. Quat Int 7(8):1–21CrossRefGoogle Scholar
  29. Ruff SW (2004) Spectral evidence for zeolite in the dust on Mars. Icarus 168:131–143CrossRefGoogle Scholar
  30. Ruff SW, Christensen PR (2002) Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J Geophys Res 107. doi:10.1029/2001JE001580Google Scholar
  31. Schmitt HH (2006) Return to the moon. Praxis, New YorkGoogle Scholar
  32. Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105(D17):22437–22443CrossRefGoogle Scholar
  33. Singer RB (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars. J Geophys Res 87:10159–110168CrossRefGoogle Scholar
  34. Smith MD, Conrath BJ, Pearl JC, Christensen PR (2002) Thermal emission spectrometer observations of Martian planet-encircling dust storm 2001A. Icarus 157(1):259–263CrossRefGoogle Scholar
  35. Soderblom LA (2006) Titan’s surface properties: correlations among DISR, RADAR and VIMS. EPSC, Berlin, 18–22 Sept 2006, p 58Google Scholar
  36. Sullivan R et al (2008) Wind-driven particle mobility on Mars: insights from Mars exploration rover observations at “El Dorado” and surroundings at Gusev Crater. J Geophys Res 113:E06S07Google Scholar
  37. Wolff MJ, Clancy RT (2003) Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J Geophys Res 108(E9):5097CrossRefGoogle Scholar
  38. Yen AS et al (2005) An integrated view of the chemistry and mineralogy of Martian soils. Nature 436:49–54CrossRefGoogle Scholar
  39. Zimbelman JR (1990) Outliers of Dust Along the Southern Margin of the Tharsis Region, Mars. Lunar Planet Sci Conf 20:525–530, HoustonGoogle Scholar
  40. Zurek RW, Martin LJ (1993) Interannual variability of planet-encircling dust storms on Mars. J Geophys Res 98(E2):3247–3259CrossRefGoogle Scholar
  41. Zurek RW, Barnes JR, Haberle RM, Pollack JB, Tillman JE, Leovy CB (1992) Dynamics of the atmosphere of Mars. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 835–933Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Steven W. Ruff
    • 1
    Email author
  • Alexey A. Pankine
    • 2
  • Gabriella Barta
    • 3
  1. 1.Mars Space Flight Facility, School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.Space Science InstitutePasadenaUSA
  3. 3.Department of Physical GeographyEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary