Skip to main content

Aeolian Dust Deposits

  • Reference work entry
  • First Online:
  • 129 Accesses

Definition

A sedimentary deposit produced from the finest (silt-sized) fraction of planetary regolith that is carried in suspension and distributed by atmospheric activity.

Synonyms

Air fall dust deposit; Atmospheric dust deposit; Silty aeolian deposit

Description

Aeolian dust deposits are distinguished from other aeolian deposits by their composition of dust-sized particles (diameters smaller than 62.5 μm) transported via atmospheric suspension rather than sand-sized particles (62.5–2,000 μm) transported via creep, reptation, or saltation, which create dunes or ripples. On Mars they cover continent-sized regions that are recognized by their relatively high-albedo (>0.27) and low-thermal inertia properties (<100 Jm−2 s−1/2 K−1) indicative of uncemented particles in the size range 2–40 μm Christensen (1986) (Fig. 1).

Aeolian Dust Deposits, Fig. 1
figure 19 figure 19

TES-derived global Lambert albedo of Mars (Christensen et al. 2001). Bright regions are covered by dust up to 2 m in thickness with particles...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301:1084–1086

    Article  Google Scholar 

  • Barta G (2011) Secondary carbonates in loess-paleosoil sequences: a general review. Cent Eur J Geosci 3(2):129–146

    Google Scholar 

  • Bates RL, Jackson JA (1995) Glossary of geology, 3rd edn. American Geological Institute, Alexandria

    Google Scholar 

  • Becze-Deák J, Langohr R, Verrecchia EP (1997) Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction. Geoderma 76:221–252

    Article  Google Scholar 

  • Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404

    Article  Google Scholar 

  • Bridges NT, Muhs DR (2012) Duststones on Mars: source, transport, deposition, and erosion. In: Grotzinger JP, Milliken RE (eds) Sedimentary geology of Mars, Special publication no. 11. Society for Sedimentary Geology, Tulsa, pp 169–183

    Google Scholar 

  • Cain JR (2010) Lunar dust: the hazard and astronaut exposure risk. Earth Moon Planets 107(1):107–125

    Article  Google Scholar 

  • Christensen PR (1986) Regional dust deposits on Mars: physical properties, age, and history. J Geophys Res 91:3533–3545

    Article  Google Scholar 

  • Christensen PR, Bandfield JL, Hamilton VE, Ruff SW, Kieffer HH, Titus TN, Malin MC, Morris RV, Lane MD, Clark RL, Jakosky BM, Mellon MT, Pearl JC, Conrath BJ, Smith MD, Clancy RT, Kuzmin RO, Roush T, Mehall GL, Gorelick N, Bender K, Murray K, Dason S, Greene E, Silverman S, Greenfield M (2001) Mars global surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J Geophys Res 106(E10):23,823–23,871

    Article  Google Scholar 

  • Cilek V (2001) The loess deposits of the Bohemian Massif: silt provenance, palaeometeorology and loessification processes. Quat Int 76(77):123–128

    Article  Google Scholar 

  • Edmondson KM, Fetzer C, Karam NH, Stella P, Mardesich N, Mueller R (2007) Multijunction solar cells optimized for the Mars surface solar spectrum. 20th Space Photovoltaic Research and Technology (SPRAT), Cleveland, 25–27 Sept

    Google Scholar 

  • Garvin JB (1984) Dust on Venus: geological implications Lunar Planet Sci Conf XV:286–287, Houston

    Google Scholar 

  • Greeley R, Iversen JD (1987) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, New York

    Google Scholar 

  • Grotzinger JP, Milliken RE (2012) The sedimentary rock record of mars: distribution, origins, and global stratigraphy. In: Sedimentary geology of Mars. Special publication no. 11, pp 1–48

    Google Scholar 

  • Guest JE, Bulmer MH, Aubele JC (1992) Small volcanic edifices and volcanism in the plains of Venus. J Geophys Res 97:15949–15966

    Article  Google Scholar 

  • Johnson JB, Lorenz RD (2000) Thermophysical properties of Alaskan loess: an analog material for the Martian polar layered terrain? Geophys Res Lett 27(17):2769–2772

    Article  Google Scholar 

  • Kreslavsky MA (2009) Surficial deposits and access to materials with known geological context on Venus. Venus geochemistry: progress, prospects, and new missions #2019, Houston

    Google Scholar 

  • Laity JE, Bridges NT (2009) Ventifacts on Earth and Mars: analytical, field, and laboratory studies supporting sand abrasion and windward feature development. Geomorphology 105:202–217

    Article  Google Scholar 

  • Landis GA, Blaney D, Cabrol N, Clark BC, Farmer J, Grotzinger J, Greeley R, MxLennan SM, Richter L (2004) Transient liquid water as a mechanism for induration of soil crusts on Mars. Lunar Planet Sci Conf XXXV, abstract #2188, Houston

    Google Scholar 

  • Landis GA, Herkenhoff K, Greeley R, Thompson S, Whelley P et al (2006) Dust and sand deposition on the MER solar arrays as viewed by the microscopic imager. Lunar Planet Sci Conf, 37, abstract #1932, Houston

    Google Scholar 

  • Laskar J, Levrard B, Mustard JF (2002) Orbital forcing of the Martian polar layered deposits. Nature 419:375–377

    Article  Google Scholar 

  • Lemmon MT, Wolff MJ, Smith MD, Clancy RT, Banfield D et al (2004) Atmospheric imaging results from the Mars exploration rovers: spirit and opportunity. Science 360:1753–1756

    Article  Google Scholar 

  • Leovy C (2001) Weather and climate on Mars. Nature 412:245–249

    Article  Google Scholar 

  • Lorenz RD, Lunine JI, Grier JA, Fisher MA (1995) Prediction of aeolian features on planets: application to Titan paleoclimatology. J Geophys Res 100(E12):26377–26386

    Article  Google Scholar 

  • Mangold N, Ansan V, Masson P, Vincendon C (2009) Estimate of aeolian dust thickness in Arabia Terra, Mars: implications of a thick mantle (>20 m) for hydrogen detection. Géomorphologie 1:23–32

    Article  Google Scholar 

  • Muhs DR, Budahn JR (2006) Geochemical evidence for the origin of late quaternary loess in central Alaska. Can J Earth Sci 43:323–337

    Article  Google Scholar 

  • Pankine AA, Ingersoll AP (2004) Interannual variability of Mars global dust storms: an example of self-organized criticality? Icarus 170(2):514–518

    Article  Google Scholar 

  • Pécsi M (1990) Loess is not just accumulation of airborne dust. Quat Int 7(8):1–21

    Article  Google Scholar 

  • Ruff SW (2004) Spectral evidence for zeolite in the dust on Mars. Icarus 168:131–143

    Article  Google Scholar 

  • Ruff SW, Christensen PR (2002) Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J Geophys Res 107. doi:10.1029/2001JE001580

    Google Scholar 

  • Schmitt HH (2006) Return to the moon. Praxis, New York

    Google Scholar 

  • Shao Y, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105(D17):22437–22443

    Article  Google Scholar 

  • Singer RB (1982) Spectral evidence for the mineralogy of high-albedo soils and dust on Mars. J Geophys Res 87:10159–110168

    Article  Google Scholar 

  • Smith MD, Conrath BJ, Pearl JC, Christensen PR (2002) Thermal emission spectrometer observations of Martian planet-encircling dust storm 2001A. Icarus 157(1):259–263

    Article  Google Scholar 

  • Soderblom LA (2006) Titan’s surface properties: correlations among DISR, RADAR and VIMS. EPSC, Berlin, 18–22 Sept 2006, p 58

    Google Scholar 

  • Sullivan R et al (2008) Wind-driven particle mobility on Mars: insights from Mars exploration rover observations at “El Dorado” and surroundings at Gusev Crater. J Geophys Res 113:E06S07

    Google Scholar 

  • Wolff MJ, Clancy RT (2003) Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J Geophys Res 108(E9):5097

    Article  Google Scholar 

  • Yen AS et al (2005) An integrated view of the chemistry and mineralogy of Martian soils. Nature 436:49–54

    Article  Google Scholar 

  • Zimbelman JR (1990) Outliers of Dust Along the Southern Margin of the Tharsis Region, Mars. Lunar Planet Sci Conf 20:525–530, Houston

    Google Scholar 

  • Zurek RW, Martin LJ (1993) Interannual variability of planet-encircling dust storms on Mars. J Geophys Res 98(E2):3247–3259

    Article  Google Scholar 

  • Zurek RW, Barnes JR, Haberle RM, Pollack JB, Tillman JE, Leovy CB (1992) Dynamics of the atmosphere of Mars. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 835–933

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Ruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Ruff, S.W., Pankine, A.A., Barta, G. (2015). Aeolian Dust Deposits. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_2

Download citation

Publish with us

Policies and ethics