Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Crustal Plateau (Venus)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_122


Crustal plateaus are ~1,500–2,400 km diameter, steep-sided, flat-topped, quasi-circular regions on Venus that reside 1–4 km above mean planetary radius (MPR) and which host much of the planet’s ribbon tessera terrain (complexly deformed crust).


In SAR images, crustal plateaus (Fig. 1) appear as extensive, radar-bright, or relatively rough terrains surrounded by radar-dark, or relatively smooth, lowlands.
This is a preview of subscription content, log in to check access.


  1. Banks BK, Hansen VL (2000) Relative timing of crustal plateau magmatism and tectonism at Tellus Regio, Venus. J Geophys Res 105:17655–17668CrossRefGoogle Scholar
  2. Basilevsky AT, Head JW, Schaber GG, Strom RG (1997) The resurfacing history of Venus. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, TucsonGoogle Scholar
  3. Bindschadler DL (1995) Tessera terrain and the formation of plateau highlands, Venus II. The University of Arizona, Tuscon, p 14Google Scholar
  4. Bindschadler DL, Head JW (1991) Tessera terrain, Venus: characterization and models for origin and evolution. J Geophys Res 96:5889–5907CrossRefGoogle Scholar
  5. Bindschadler DL, Parmentier EM (1990) Mantle flow tectonics: the influence of a ductile lower crust and implications for the formation of topographic uplands on Venus. J Geophys Res 95(B13):21329–21344CrossRefGoogle Scholar
  6. Bindschadler DL, deCharon A, Beratan KK, Head JW (1992a) Magellan observations of Alpha Regio: implications for formation of complex ridged terrains on Venus. J Geophys Res 97:13563–13577CrossRefGoogle Scholar
  7. Bindschadler DL, Schubert G, Kaula WM (1992b) Coldspots and hotspots: global tectonics and mantle dynamic of Venus. J Geophys Res 97:13495–13532CrossRefGoogle Scholar
  8. Bjonnes EE, Hansen VL, James B, Swenson JB (2012) Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus. doi:10.1016/j.icarus.2011.03.033Google Scholar
  9. Ghent RR, Hansen VL (1999) Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus 139:116–136CrossRefGoogle Scholar
  10. Ghent RR, Tibuleac IM (2002) Ribbon spacing in Venusian tessera: implications for layer thickness and thermal state. Geophys Res Lett 29(20):994–997CrossRefGoogle Scholar
  11. Gilmore MS, Head JW (2000) Sequential deformation of plains at the margins of Alpha Regio, Venus: implications for tessera formation. Meteor Planet Sci 35(4):667–687CrossRefGoogle Scholar
  12. Gilmore MS, Collins GC, Ivanov MA, Marinangeli L, Head JW (1998) Style and sequence of extensional structures in tessera terrain, Venus. J Geophys Res 103(E7):16813–16840CrossRefGoogle Scholar
  13. Grimm RE (1994) The deep structure of Venusian plateau highlands. Icarus 112(1):89–103CrossRefGoogle Scholar
  14. Grimm RE, Hess PC (1997) The crust of Venus. In: Bougher SW, Hunten DM, Philips RJ (eds) Venus II: geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, p 1205Google Scholar
  15. Hansen VL (2005) Venus’s shield terrain. Geol Soc Am Bull 117(5/6):808–822. doi:10.1130/B256060.1CrossRefGoogle Scholar
  16. Hansen VL (2006) Geologic constraints on crustal plateau surface histories, Venus: the lava pond and bolide impact hypotheses. J Geophys Res 111:E11010. doi:10.1029/2006JE002714CrossRefGoogle Scholar
  17. Hansen VL, López I (2010) Venus records a rich early history. Geology 38(4):311–314CrossRefGoogle Scholar
  18. Hansen VL, López I (2013) Geologic mapping of the Niobe and Aphrodite 1:10 M map areas, Venus: insights for mapping methodology and implications for Venus evolution. 44th Lunar Planet Sci Conf, Abstract #2027, LPI Contributions, 1719, HoustonGoogle Scholar
  19. Hansen VL, Willis JJ (1996) Structural analysis of a sampling of tesserae: implications for Venus geodynamics. Icarus 123(4):296–312CrossRefGoogle Scholar
  20. Hansen VL, Willis JJ (1998) Ribbon terrain formation, southwestern Fortuna Tessera, Venus: implications for lithosphere evolution. Icarus 132:321–343CrossRefGoogle Scholar
  21. Hansen VL, Young DA (2007) Venus’s evolution: a synthesis. In: Cloos M, Carlson WD, Gilbert MC, Liou JG, Sorensen SS (eds) Convergent Margin Terranes and Associated regions: a tribute to W.G. Ernst. Geological Society of America, Denver, pp 255–273. doi:10.1130/2006.2419(13)CrossRefGoogle Scholar
  22. Hansen VL, Willis JJ, Banerdt WB (1997) Tectonic overview and synthesis. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 797–844Google Scholar
  23. Hansen VL, Banks BK, Ghent RR (1999) Tessera terrain and crustal plateaus, Venus. Geology 27:1071–1074CrossRefGoogle Scholar
  24. Hansen VL, Phillips RJ, Willis JJ, Ghent RR (2000) Structures in tessera terrain, Venus: issues and answers. J Geophys Res 105:4135–4152CrossRefGoogle Scholar
  25. Hashimoto GL, Roos-Serote M, Sugita S, Gilmore MS, Kamp LW, Carlson RW, Baines KH (2008) Felsic highland crust on Venus suggested by Galileo near-infrared mapping spectrometer data. J Geophys Res 113:E00B24. doi:10.1029/2008JE003134Google Scholar
  26. Ivanov MA, Head JW (1996) Tessera terrain on Venus: a survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J Geophys Res 101(6):14861–14908CrossRefGoogle Scholar
  27. Izenberg NR, Arvidson RE, Phillips RJ (1994) Impact crater degradation on Venusian plains. Geophys Res Lett 21:289–292CrossRefGoogle Scholar
  28. Kiefer WS, Peterson K (2003) Mantle and crustal structure in Phoebe Regio and Devana Chasma, Venus. Geophys Res Lett 30(1):1005CrossRefGoogle Scholar
  29. Kucinskas AB, Turcotte DL (1994) Isostatic compensation of equatorial highlands on Venus. Icarus 112(1):104–116CrossRefGoogle Scholar
  30. McGill GE (1994) Hotspot evolution and Venusian tectonic style. J Geophys Res 99(E11):23149–23161CrossRefGoogle Scholar
  31. McKinnon WB, Zahnle KJ, Ivanov BA, Melosh HJ (1997) Cratering on Venus: models and observations. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 969–1014Google Scholar
  32. Mueller N, Helbert J, Hashimoto GL, Tsang CCC, Erard S, Piccioni G, Drossart P (2008) Venus surface thermal emission at 1 mm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J Geophys Res 113:E00B17. doi:10.1029/2008JE003118Google Scholar
  33. Nimmo F, McKenzie D (1998) Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci 26:23–52CrossRefGoogle Scholar
  34. Nunes DC et al (2004) Relaxation of compensated topography and the evolution of crustal plateaus on Venus. J Geophys Res 109:E01006. doi:10.1029/2003JE002119Google Scholar
  35. Phillips RJ, Hansen VL (1994) Tectonic and magmatic evolution of Venus. Annu Rev Earth Planet Sci 22:597–654CrossRefGoogle Scholar
  36. Phillips RJ, Hansen VL (1998) Geological evolution of Venus. Rises Plains Plumes Plateaus Sci 279:1492–1497Google Scholar
  37. Phillips RJ, Izenberg NR (1995) Ejecta correlations with spatial crater density and Venus resurfacing history. Geophys Res Lett 22(12):1517–1520CrossRefGoogle Scholar
  38. Phillips RJ, Grimm RE, Malin MC (1991) Hot-spot evolution and the global tectonics of Venus. Science 252:651–658CrossRefGoogle Scholar
  39. Romeo I, Turcotte DL (2008) Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet Sci Lett 276(1–2):85–97CrossRefGoogle Scholar
  40. Simons M, Solomon SC, Hager BH (1997) Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. Geophys J Int 131(1):24–44CrossRefGoogle Scholar
  41. Slonecker (2013), Structural and geologic mapping of northern Tellus Regio, Venus: Implications for crustal plateau evolution, M.S. Thesis, University of Minnesota Duluth, 77 ppGoogle Scholar
  42. Smrekar SE, Phillips RJ (1991) Venusian highlands: geoid to topography ratios and their implications. Earth Planet Sci Lett 107:582–597CrossRefGoogle Scholar
  43. Smrekar SE, Kiefer WS, Stofan ER (1997) Large volcanic rises on Venus. In: Bouger SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 845–879Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of MinnesotaDuluthUSA