Advertisement

Spinal Interneurons

  • Elzbieta Jankowska
Reference work entry

Abstract

This chapter deals with the neurons that constitute the majority of spinal neurons and are the main source of input to motoneurons, and therefore of critical importance for all motor reactions. The description of spinal interneurons focuses on the properties of their main populations and on the operation of basic interneuronal networks, both in animals and humans.

Keywords

Motor Nucleus Inhibitory Interneuron Peripheral Afferents Renshaw Cell Embryonic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

C T and L segments

Cervical, thoracic and lumbar spinal cord segments

EPSPs

Excitatory postsynaptic potentials

GABA

Gamma aminobutyric acid

HRP

Horseradish peroxidise

IPSPs

Inhibitory postsynaptic potentials

NA

Noradrenaline

5-HT

Serotonin

VGLUT1

Vesicular glutamate transporter one

VGLUT2

Vesicular glutamate transporter two

WGA

Wheat germ agglutinin

Notes

Acknowledgments

The research work in author’s laboratory has been supported by grants from the Swedish Research Council (15393-01) and from the NINDS/NIH (R01 NS040863). Comments from Dr. Robert Burke are gratefully acknowledged.

References

  1. Alvarez FJ, Fyffe RE (2007) The continuing case for the Renshaw cell. J Physiol 584:31–45PubMedCrossRefGoogle Scholar
  2. Alvarez FJ, Dewey DE, Harrington DA, Fyffe RE (1997) Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J Comp Neurol 379:150–170PubMedCrossRefGoogle Scholar
  3. Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. J Comp Neurol 493:177–192PubMedCrossRefGoogle Scholar
  4. Brownstone RM, Wilson JM (2008) Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res Rev 57:64–76PubMedCrossRefGoogle Scholar
  5. Butt SJ, Kiehn O (2003) Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–963PubMedCrossRefGoogle Scholar
  6. Corna S, Grasso M, Nardone A, Schieppati M (1995) Selective depression of medium-latency leg and foot muscle responses to stretch by an alpha 2-agonist in humans. J Physiol 484:803–809PubMedGoogle Scholar
  7. Cullheim S, Kellerth JO (1978) A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hind-limb muscles. J Physiol 281:285–299PubMedGoogle Scholar
  8. Flynn JR, Graham BA, Galea MP, Callister RJ (2011) The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 60:809–822PubMedCrossRefGoogle Scholar
  9. Grillner S, Ekeberg O, El Manira A, Lansner A, Parker D, Tegner J, Wallen P (1998) Intrinsic function of a neuronal network – a vertebrate central pattern generator. Brain Res Rev 26:184–197PubMedCrossRefGoogle Scholar
  10. Hagglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13:246–252PubMedCrossRefGoogle Scholar
  11. Harris-Warrick RM, Johnson BR, Peck JH, Kloppenburg P, Ayali A, Skarbinski J (1998) Distributed effects of dopamine modulation in the crustacean pyloric network. Ann N Y Acad Sci 860:155–167PubMedCrossRefGoogle Scholar
  12. Ishizuka N, Mannen H, Hongo T, Sasaki S (1979) Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: three dimensional reconstructions from serial sections. J Comp Neurol 186:189–211PubMedCrossRefGoogle Scholar
  13. Jankowska E, Lindstrom S (1970) Morphological identification of physiologically defined neurones in the cat spinal cord. Brain Res 20:323–326PubMedCrossRefGoogle Scholar
  14. Jankowska E, Roberts W (1972) Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J Physiol 222:623–642PubMedGoogle Scholar
  15. Jankowska E, Skoog B (1986) Labeling of midlumbar neurones projecting to cat hindlimb motoneurones by transneuronal transport of a horseradish peroxidase conjugate. Neurosci Lett 71:163–168PubMedCrossRefGoogle Scholar
  16. Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378PubMedCrossRefGoogle Scholar
  17. Jankowska E, Hammar I, Chojnicka B, Heden CH (2000) Effects of monoamines on interneurons in four spinal reflex pathways from group I and/or group II muscle afferents. Eur J Neurosci 12:701–714PubMedCrossRefGoogle Scholar
  18. Jankowska E (2008) Spinal interneuronal networks in the cat; elementary components. Brain Res Rev 57:46–55PubMedCrossRefGoogle Scholar
  19. Jankowska E, Edgley SA (2010) Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update. Eur J Neurosci 32:881–893PubMedCrossRefGoogle Scholar
  20. Kiehn O (2006) Locomotor circuits in the Mammalian spinal cord. Annu Rev Neurosci 29:279–306PubMedCrossRefGoogle Scholar
  21. Lindstrom S (1973) Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat. Acta Physiol Scand Suppl 392:1–43PubMedGoogle Scholar
  22. Liu TT, Bannatyne BA, Jankowska E, Maxwell DJ (2010) Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents. J Physiol 588:4217–4233PubMedCrossRefGoogle Scholar
  23. Lundberg A (1975) Control of spinal mechanisms from the brain. In: Tower DB (ed) The basic neurosciences, vol 1. Raven, New York, pp 253–265Google Scholar
  24. McCrea DA (1998) Neuronal basis of afferent-evoked enhancement of locomotor activity. Ann N Y Acad Sci 860:216–225PubMedCrossRefGoogle Scholar
  25. Noga BR, Shefchyk SJ, Jamal J, Jordan LM (1987) The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp Brain Res 66:99–105PubMedCrossRefGoogle Scholar
  26. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379PubMedCrossRefGoogle Scholar
  27. Roberts A, Soffe SR, Wolf ES, Yoshida M, Zhao FY (1998) Central circuits controlling locomotion in young frog tadpoles. Ann N Y Acad Sci 860:19–34PubMedCrossRefGoogle Scholar
  28. Saueressig H, Burrill J, Goulding M (1999) Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126:4201–4212PubMedGoogle Scholar
  29. Selverston A, Elson R, Rabinovich M, Huerta R, Abarbanel H (1998) Basic principles for generating motor output in the stomatogastric ganglion. Ann N Y Acad Sci 860:35–50PubMedCrossRefGoogle Scholar
  30. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven/LondonGoogle Scholar
  31. Stepien AE, Arber S (2008) Probing the locomotor conundrum: descending the ‘V’ interneuron ladder. Neuron 60:1–4PubMedCrossRefGoogle Scholar
  32. Stepien AE, Tripodi M, Arber S (2010) Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:456–472PubMedCrossRefGoogle Scholar
  33. Wenner P, O’Donovan MJ (1999) Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord. J Neurosci 19:7557–7567PubMedGoogle Scholar
  34. Wilson JM, Blagovechtchenski E, Brownstone RM (2010) Genetically defined inhibitory neurons in the mouse spinal cord dorsal horn: a possible source of rhythmic inhibition of motoneurons during fictive locomotion. J Neurosci 30:1137–1148PubMedCrossRefGoogle Scholar
  35. Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662PubMedCrossRefGoogle Scholar

Further Reading

  1. Al-Mosawie A, Wilson JM, Brownstone RM (2007) Heterogeneity of V2-derived interneurons in the adult mouse spinal cord. Eur J Neurosci 26:3003–3015PubMedCrossRefGoogle Scholar
  2. Alstermark B, Isa T, Pettersson LG, Sasaki S (2007) The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol (Oxf) 189:123–140CrossRefGoogle Scholar
  3. Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology the nervous system motor control. American Physiological Society, Bethesda, pp 509–595Google Scholar
  4. Bannatyne BA, Liu TT, Hammar I, Stecina K, Jankowska E, Maxwell DJ (2009) Excitatory and inhibitory intermediate zone interneurons in pathways from feline group I and II afferents: differences in axonal projections and input. J Physiol 587:379–399PubMedCrossRefGoogle Scholar
  5. Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36PubMedGoogle Scholar
  6. Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128:263–277PubMedCrossRefGoogle Scholar
  7. Fetcho JR, Higashijima S, McLean DL (2008) Zebrafish and motor control over the last decade. Brain Res Rev 57:86–93PubMedCrossRefGoogle Scholar
  8. Fetz EE, Perlmutter SI, Prut Y, Seki K, Votaw S (2002) Roles of primate spinal interneurons in preparation and execution of voluntary hand movement. Brain Res Rev 40:53–65PubMedCrossRefGoogle Scholar
  9. Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518PubMedCrossRefGoogle Scholar
  10. Hultborn H (2006) Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog Neurobiol 78:215–232PubMedCrossRefGoogle Scholar
  11. Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533:31–40PubMedCrossRefGoogle Scholar
  12. Jankowska E, Hammar I (2002) Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Res Rev 40:19–28PubMedCrossRefGoogle Scholar
  13. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29PubMedCrossRefGoogle Scholar
  14. Kandel ER, Schwartz JH, Jessell TM (eds) (1991) Principles of neural sciences. Elsevier, New YorkGoogle Scholar
  15. Lundberg A (1982) Inhibitory control from the brain stem of transmission from primary afferents to motoneurones, primary afferent terminals and ascending pathways. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier Biomedical Press, Amsterdam, pp 179–225Google Scholar
  16. McCrea DA (1992) Can sense be made of spinal interneuron circuits? Behav Brain Res 15:633–643Google Scholar
  17. Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord: its role in motor control and movement disorders. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of Gothenburg, Institute of Neuroscience and PhysiologyGöteborgSweden

Personalised recommendations