Skip to main content

Pressure and Equilibrium States in Ergodic Theory

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition of the Subject

Introduction

Warming Up: Thermodynamic Formalism for Finite Systems

Shift Spaces, Invariant Measures and Entropy

The Variational Principle: A Global Characterization of Equilibrium

The Gibbs Property: A Local Characterization of Equilibrium

Examples on Shift Spaces

Examples from Differentiable Dynamics

Nonequilibrium Steady States and Entropy Production

Some Ongoing Developments and Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dynamical system:

In this article: a continuous transformation T of a compact metric space X. For each \({x\in X}\), the transformation T generates a trajectory \({(x,Tx,T^2x,\dots)}\).

Invariant measure:

In this article: a probability measure μ on X which is invariant under the transformation T, i. e., for which \({\langle f\circ T,\mu\rangle=\langle f,\mu\rangle}\) for each continuous \({f\colon X\to\mathbb{R}}\). Here \({\langle f,\mu\rangle}\) is a short-hand notation for \({\int_X f\,\mathrm{d}\mu}\). The triple \({(X,T,\mu)}\) is called a measure‐preserving dynamical system.

Ergodic theory:

Ergodic theory is the mathematical theory of measure‐preserving dynamical systems.

Entropy:

In this article: the maximal rate of information gain per time that can be achieved by coarse-grained observations on a measure‐preserving dynamical system. This quantity is often denoted \({h(\mu)}\).

Equilibrium state:

In general, a given dynamical system \({T\colon X\to X}\) admits a huge number of invariant measures. Given some continuous \({\phi \colon X\to\mathbb{R}}\) (“potential”), those invariant measures which maximize a functional of the form \({F(\mu)=h(\mu)+\langle \phi,\mu\rangle}\) are called “equilibrium states” for ϕ.

Pressure:

The maximum of the functional \({F(\mu)}\) is denoted by \({P(\phi)}\) and called the “topological pressure” of ϕ, or simply the “pressure” of ϕ.

Gibbs state:

In many cases, equilibrium states have a local structure that is determined by the local properties of the potential ϕ. They are called “Gibbs states”.

Sinai–Ruelle–Bowen measure:

Special equilibrium or Gibbs states that describe the statistics of the attractor of certain smooth dynamical systems.

Bibliography

  1. Baladi V (2000) Positive transfer operators and decay of correlations. Advanced Series in Nonlinear Dynamics, vol 16. World Scientific, Singapore

    Google Scholar 

  2. Bowen R (1970) Markov partitions for Axiom A diffeomorphisms. Amer J Math 92:725–747

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowen R (1974/1975) Some systems with unique equilibrium states. Math Syst Theory 8:193–202

    Google Scholar 

  4. Bowen R (1974/75) Bernoulli equilibrium states for Axiom A diffeomorphisms. Math Syst Theory 8:289–294

    Google Scholar 

  5. Bowen R (1979) Hausdorff dimension of quasicircles. Inst Hautes Études Sci Publ Math 50:11–25

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen R (2008) Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol 470, 2nd edn (1st edn 1975). Springer, Berlin

    Google Scholar 

  7. Bowen R, Ruelle D (1975) The ergodic theory of Axiom A flows. Invent Math 29:181–202

    Article  MathSciNet  MATH  Google Scholar 

  8. Brudno AA (1983) Entropy and the complexity of the trajectories of a dynamical system. Trans Mosc Math Soc 2:127–151

    Google Scholar 

  9. Bruin H, Demers M, Melbourne I (2007) Existence and convergence properties of physical measures for certain dynamical systems with holes. Preprint

    Google Scholar 

  10. Bruin H, Keller G (1998) Equilibrium states for S‑unimodal maps. Ergodic Theory Dynam Syst 18(4):765–789

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruin H, Todd M (2007) Equilibrium states for potentials with \({\text{sup } \varphi - \text{inf } \varphi < h_{top}(f)}\). Commun Math Phys doi:10.1007/s00220-0-008-0596-0

  12. Bruin H, Todd M (2007) Equilibrium states for interval maps: the potential \({-t\log |Df|}\). Preprint

    Google Scholar 

  13. Buzzi J, Sarig O (2003) Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergod Theory Dynam Syst 23(5):1383–1400

    Article  MathSciNet  MATH  Google Scholar 

  14. Chaitin GJ (1987) Information, randomness & incompleteness. Papers on algorithmic information theory. World Scientific Series in Computer Science, vol 8. World Scientific, Singapore

    Book  Google Scholar 

  15. Chernov N (2002) Invariant measures for hyperbolic dynamical systems. In: Handbook of Dynamical Systems, vol 1A. North-Holland, pp 321–407

    Google Scholar 

  16. Coelho Z, Parry W (1990) Central limit asymptotics for shifts of finite type. Isr J Math 69(2):235–249

    Article  MathSciNet  MATH  Google Scholar 

  17. Dobrushin RL (1968) The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab Appl 13:197–224

    Article  Google Scholar 

  18. Dobrushin RL (1968) Gibbsian random fields for lattice systems with pairwise interactions. Funct Anal Appl 2:292–301

    Article  MATH  Google Scholar 

  19. Dobrushin RL (1968) The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funct Anal Appl 2:302–312

    Article  MATH  Google Scholar 

  20. Dobrushin RL (1969) Gibbsian random fields. The general case. Funct Anal Appl 3:22–28

    Article  MATH  Google Scholar 

  21. Eizenberg A, Kifer Y, Weiss B (1994) Large deviations for \({\mathbb{Z}^d}\)-actions. Comm Math Phys 164(3):433–454

    Article  MathSciNet  MATH  Google Scholar 

  22. Falconer K (2003) Fractal geometry. Mathematical foundations and applications, 2nd edn. Wiley, San Francisco

    Book  MATH  Google Scholar 

  23. Fisher ME, Felderhof BU (1970) Phase transition in one‐dimensional clusterinteraction fluids: IA. Thermodynamics, IB. Critical behavior. II. Simple logarithmic model. Ann Phys 58:177–280

    Google Scholar 

  24. Fiebig D, Fiebig U-R, Yuri M (2002) Pressure and equilibrium states for countable state Markov shifts. Isr J Math 131:221–257

    Article  MathSciNet  MATH  Google Scholar 

  25. Fisher ME (1967) The theory of condensation and the critical point. Physics 3:255–283

    Google Scholar 

  26. Gallavotti G (1996) Chaotic hypothesis: Onsager reciprocity and fluctuation‐dissipation theorem. J Stat Phys 84:899–925

    Article  MathSciNet  MATH  Google Scholar 

  27. Gallavotti G, Cohen EGD (1995) Dynamical ensembles in stationary states. J Stat Phys 80:931–970

    Article  MathSciNet  MATH  Google Scholar 

  28. Gaspard P, Wang X-J (1988) Sporadicity: Between periodic and chaotic dynamical behaviors. In: Proceedings of the National Academy of Sciences USA, vol 85, pp 4591–4595

    Google Scholar 

  29. Georgii H-O (1988) Gibbs measures and phase transitions. In: de Gruyter Studies in Mathematics, 9. de Gruyter, Berlin

    Google Scholar 

  30. Gurevich BM, Savchenko SV (1998) Thermodynamic formalism for symbolic Markov chains with a countable number of states. Russ Math Surv 53(2):245–344

    Article  MathSciNet  MATH  Google Scholar 

  31. Hofbauer F (1977) Examples for the nonuniqueness of the equilibrium state. Trans Amer Math Soc 228:223–241

    Article  MathSciNet  MATH  Google Scholar 

  32. Israel R (1979) Convexity in the theory of lattice gases. Princeton Series in Physics. Princeton University Press

    Google Scholar 

  33. Jakobson M, Świątek (2002) One‐dimensional maps. In: Handbook of Dynamical Systems, vol 1A. North-Holland, Amsterdam, pp 321–407

    Google Scholar 

  34. Jaynes ET (1989) Papers on probability, statistics and statistical physics. Kluwer, Dordrecht

    MATH  Google Scholar 

  35. Jiang D, Qian M, Qian M-P (2000) Entropy production and information gain in Axiom A systems. Commun Math Phys 214:389–409

    Article  MathSciNet  MATH  Google Scholar 

  36. Katok A (2007) Fifty years of entropy in dynamics: 1958–2007. J Mod Dyn 1(4):545–596

    Article  MathSciNet  MATH  Google Scholar 

  37. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Encyclopaedia of Mathematics and its Applications, vol 54. Cambridge University Press, Cambridge

    Book  Google Scholar 

  38. Keller G (1998) Equilibrium states in ergodic theory. In: London Mathematical Society Student Texts, vol 42. Cambridge University Press, Cambridge

    Google Scholar 

  39. Kifer Y (1990) Large deviations in dynamical systems and stochastic processes. Trans Amer Math Soc 321:505–524

    Article  MathSciNet  MATH  Google Scholar 

  40. Kolmogorov AN (1983) Combinatorial foundations of information theory and the calculus of probabilities. Uspekhi Mat Nauk 38:27–36

    MathSciNet  Google Scholar 

  41. Lanford OE, Ruelle D (1969) Observables at infinity and states with short range correlations in statistical mechanics. Commun Math Phys 13:194–215

    Article  MathSciNet  Google Scholar 

  42. Lewis JT, Pfister C-E (1995) Thermodynamic probability theory: some aspects of large deviations. Russ Math Surv 50:279–317

    Article  MathSciNet  MATH  Google Scholar 

  43. Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  44. Misiurewicz M (1976) A short proof of the variational principle for a \({\mathbb{Z}_{+}^{N}}\) action on a compact space. In: International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), Astérisque, No. 40, Soc Math France, pp 147–157

    Google Scholar 

  45. Moulin-Ollagnier J (1985) Ergodic Theory and Statistical Mechanics. In: Lecture Notes in Mathematics, vol 1115. Springer, Berlin

    Google Scholar 

  46. Pesin Y (1997) Dimension theory in dynamical systems. Contemporary views and applications. University of Chicago Press, Chicago

    Google Scholar 

  47. Pesin Y, Senti S (2008) Equilibrium Measures for Maps with Inducing Schemes. J Mod Dyn 2(3):1–31

    MathSciNet  Google Scholar 

  48. Pesin Y, Weiss (1997) The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7(1):89–106

    Article  MathSciNet  MATH  Google Scholar 

  49. Pollicott M (2000) Rates of mixing for potentials of summable variation. Trans Amer Math Soc 352(2):843–853

    Article  MathSciNet  MATH  Google Scholar 

  50. Pomeau Y, Manneville P (1980) Intermittent transition to turbulence in dissipative dynamical systems. Comm Math Phys 74(2):189–197

    Article  MathSciNet  Google Scholar 

  51. Rondoni L, Mejía-Monasterio C (2007) Fluctuations in nonequilibrium statistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20(10):R1–R37

    Google Scholar 

  52. Ruelle D (1968) Statistical mechanics of a one‐dimensional lattice gas. Commun Math Phys 9:267–278

    Article  MathSciNet  MATH  Google Scholar 

  53. Ruelle D (1973) Statistical mechanics on a compact set with \({\mathbb{Z}^\nu}\) action satisfying expansiveness and specification. Trans Amer Math Soc 185:237–251

    Article  MathSciNet  Google Scholar 

  54. Ruelle D (1976) A measure associated with Axiom A attractors. Amer J Math 98:619–654

    Article  MathSciNet  MATH  Google Scholar 

  55. Ruelle D (1982) Repellers for real analytic maps. Ergod Theory Dyn Syst 2(1):99–107

    Article  MathSciNet  MATH  Google Scholar 

  56. Ruelle D (1996) Positivity of entropy production in nonequilibrium statistical mechanics. J Stat Phys 85:1–23

    Article  MathSciNet  MATH  Google Scholar 

  57. Ruelle D (1998) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat Phys 95:393–468

    Article  MathSciNet  Google Scholar 

  58. Ruelle D (2004) Thermodynamic formalism: The mathematical structures of equilibrium statistical mechanics. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge

    Book  Google Scholar 

  59. Ruelle D (2003) Extending the definition of entropy to nonequilibrium steady states. Proc Nat Acad Sc 100(6):3054–3058

    Article  MathSciNet  MATH  Google Scholar 

  60. Sarig O (1999) Thermodynamic formalism for countable Markov shifts. Ergod Theory Dyn Syst 19(6):1565–1593

    Article  MathSciNet  MATH  Google Scholar 

  61. Sarig O (2001) Phase transitions for countable Markov shifts. Comm Math Phys 217(3):555–577

    Article  MathSciNet  MATH  Google Scholar 

  62. Sarig O (2003) Existence of Gibbs measures for countable Markov shifts. Proc Amer Math Soc 131(6):1751–1758

    Article  MathSciNet  MATH  Google Scholar 

  63. Seneta E (2006) Non‐negative matrices and Markov chains. In: Springer Series in Statistics. Springer

    Google Scholar 

  64. Sinai Ja G (1968) Markov partitions and C‑diffeomorphisms. Funct Anal Appl 2:61–82

    Article  Google Scholar 

  65. Sinai Ja G (1972) Gibbs measures in ergodic theory. Russ Math Surv 27(4):21–69

    Article  Google Scholar 

  66. Thaler M (1980) Estimates of the invariant densities of endomorphisms with indifferent fixed points. Isr J Math 37(4):303–314

    Article  MathSciNet  MATH  Google Scholar 

  67. Walters P (1975) Ruelle's operator theorem and g‑measures. Trans Amer Math Soc 214:375–387

    MathSciNet  MATH  Google Scholar 

  68. Walters P (1992) Differentiability properties of the pressure of a continuous transformation on a compact metric space. J Lond Math Soc (2) 46(3):471–481

    Article  MathSciNet  Google Scholar 

  69. Wang X-J (1989) Statistical physics of temporal intermittency. Phys Rev A 40(11):6647–6661

    Article  Google Scholar 

  70. Young L-S (1990) Large deviations in dynamical systems. Trans Amer Math Soc 318:525–543

    MathSciNet  MATH  Google Scholar 

  71. Young L-S (2002) What are SRB measures, and which dynamical systems have them? Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J Statist Phys 108(5–6):733–754

    Article  MathSciNet  MATH  Google Scholar 

  72. Zinsmeister M (2000) Thermodynamic formalism and holomorphic dynamical systems. SMF/AMS Texts and Monographs, 2. American Mathematical Society

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Chazottes, JR., Keller, G. (2012). Pressure and Equilibrium States in Ergodic Theory . In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_90

Download citation

Publish with us

Policies and ethics