Skip to main content

Phase Transitions on Fractals and Networks

  • Reference work entry
  • 322 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Ising Model

Fractals

Diffusion on Fractals

Ising Model on Fractals

Networks

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cluster:

Clusters are sets of occupied neighboring sites.

Critical exponent:

At a critical point or second‐order phase transition, many quantities diverge or vanish with a power law of the distance from this critical point; the critical exponent is the exponent for this power law.

Diffusion:

A random walker decides at each time step randomly in which direction to proceed. The resulting mean square distance normally is linear in time.

Fractals:

Fractals have a mass varying with some power of their linear dimension. The exponent of this power law is called the fractal dimension and is smaller than the dimension of the space.

Ising model:

Each site carries a magnetic dipole which points up or down; neighboring dipoles “want” to be parallel.

Percolation:

Each site of a large lattice is randomly occupied or empty.

Bibliography

  1. Albert R, Barabási AL (2002) Rev Mod Phys 74:47; Boccalettia S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Phys Repts 424:175

    Google Scholar 

  2. Aleksiejuk A, Hołyst JA, Stauffer D (2006) Physica A 310:260; Dorogovtsev SN, Goltsev AV, Mendes JFF (2002) Phys Rev E 66:016104. arXiv:0705.0010 [cond-mat.stat-mech]; Bianconi G (2002) Phys Lett A 303:166

    Google Scholar 

  3. Bab MA, Fabricius G, Albano EV (2005) Phys Rev E 71:036139

    Article  Google Scholar 

  4. Barrat A, Weigt M (2000) Eur Phys J B 13:547; Gitterman M (2000) J Phys A 33:8373; Pȩkalski A (2001) Phys Rev E 64:057104

    Google Scholar 

  5. Ben-Avraham D, Havlin S (1982) J Phys A 15:L691

    Article  Google Scholar 

  6. Berger N, Ganten N, Peres Y (2003) Probab Theory Relat Fields 126:221

    Article  MATH  Google Scholar 

  7. Brandt WW (1975) J Chem Phys 63:5162

    Article  Google Scholar 

  8. Bunde A, Havlin S (1996) Fractals and Disordered Systems. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Cohen R, Erez K, ben-Avraham D, Havlin S (2000) Phys Rev Lett 85:4626; Cohen R, Erez K, ben-Avraham D, Havlin S (2001) Phys Rev Lett 86:3682; Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2000) Phys Rev Lett 85:5468

    Google Scholar 

  10. Cont R, Bouchaud J-P (2000) Macroecon Dyn 4:170

    Article  MATH  Google Scholar 

  11. Dhar D, Stauffer D (1998) Int J Mod Phys C 9:349

    Article  Google Scholar 

  12. Edmonds B (2006) In: Billari FC, Fent T, Prsakwetz A, Scheffran J (eds) Agent-based computational modelling. Physica-Verlag, Heidelberg, p 195

    Chapter  Google Scholar 

  13. Frey E, Kroy K (2005) Ann Physik 14:20

    Article  MATH  Google Scholar 

  14. Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77

    Article  Google Scholar 

  15. Gefen Y, Mandelbrot BB, Aharony A (1980) Phys Rev Lett 45:855

    Article  MathSciNet  Google Scholar 

  16. de Gennes PG (1976) Rech 7:916

    Google Scholar 

  17. Havlin S, Ben Avraham D (1987) Adv Phys 36:395; Havlin S, Ben Avraham D (2002) Adv Phys 51:187

    Google Scholar 

  18. Hinczewski M, Berker AN (2006) Phys Rev E 73:066126

    Article  MathSciNet  Google Scholar 

  19. Johansen A, Sornette D (1999) Int J Mod Phys C 10:563

    Article  Google Scholar 

  20. Kirsch A (1999) Int J Mod Phys C 10:753

    Article  Google Scholar 

  21. Koza Z, Ausloos M (2007) Physica A 375:199

    Article  MathSciNet  Google Scholar 

  22. Kutner R, Kehr K (1983) Phil Mag A 48:199

    Article  Google Scholar 

  23. Malarz K (2003) Int J Mod Phys C 14:561

    Article  Google Scholar 

  24. Monceau P, Hsiao PY (2004) Phys Lett A 332:310

    Article  MATH  Google Scholar 

  25. Rozenfeld HD, Ben-Abraham D (2007) Phys Rev E 75:061102

    Article  Google Scholar 

  26. Schelling TC (1971) J Math Sociol 1:143

    Article  Google Scholar 

  27. Simon HA (1955) Biometrika 42:425

    MathSciNet  MATH  Google Scholar 

  28. Stauffer D, Moss de Oliveira S, de Oliveira PMC, Sá Martins JS (2006) Biology, Sociology, Geology by Computational Physicists. Elsevier, Amsterdam

    Google Scholar 

  29. Sznajd-Weron K, Sznajd J (2000) Int J Mod Phys C 11:1157

    Article  Google Scholar 

  30. Sánchez AD, López JM, Rodríguez MA (2002) Phys Rev Lett 88:048701; Sumour MA, Shabat MM (2005) Int J Mod Phys C 16:585; Sumour MA, Shabat MM, Stauffer D (2006) Islamic Univ J (Gaza) 14:209; Lima FWS, Stauffer D (2006) Physica A 359:423; Sumour MA, El-Astal AH, Lima FWS, Shabat MM, Khalil HM (2007) Int J Mod Phys C 18:53; Lima FWS (2007) Comm Comput Phys 2:522 and (2008) Physica A 387:1545; 3503

    Google Scholar 

  31. Watts DJ, Strogatz SH (1998) Nature 393:440

    Article  Google Scholar 

  32. Zhang Z-Z, Zhou S-G, Zou T (2007) Eur Phys J B 56:259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Stauffer, D. (2012). Phase Transitions on Fractals and Networks. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_88

Download citation

Publish with us

Policies and ethics