Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Perturbation Theory in Quantum Mechanics

  • Luigi E. Picasso
  • Luciano Bracci
  • Emilio d'Emilio
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1806-1_85

Article Outline

Glossary

Definition of the Subject

Introduction

Presentation of the Problem and an Example

Perturbation of Point Spectra: Nondegenerate Case

Perturbation of Point Spectra: Degenerate Case

The Brillouin–Wigner Method

Symmetry and Degeneracy

Problems with the Perturbation Series

Perturbation of the Continuous Spectrum

Time Dependent Perturbations

Future Directions

Bibliography

Keywords

Lithium Kato 
This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Baker GA, Graves‐Morris P (1996) Padé approximants. Cambridge Univ. Press, CambridgeGoogle Scholar
  2. 2.
    Bargmann V (1964) Note on Wigner's theorem on symmetry operations. J Math Phys 5:862–868MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bender CM, Wu TT (1969) Anharmonic oscillator. Phys Rev 184:1231–1260MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bloch C (1958) Sur la théorie des perturbations des états liées. Nucl Phys 6:329–347CrossRefGoogle Scholar
  5. 5.
    Böhm A (1993) Quantum mechanics, foundations and applications. Springer, New York, pp 208–215Google Scholar
  6. 6.
    Borel E (1899) Mémoires sur le séries divergentes. Ann Sci École Norm Sup 16:9–136MathSciNetMATHGoogle Scholar
  7. 7.
    Born M, Heisenberg W, Jordan P (1926) Zur Quantenmechanik, II. Z Phys 35:557–615MATHCrossRefGoogle Scholar
  8. 8.
    Born M (1926) Quantenmechanik der Stossvorgänge. Z Phys 38:803–827CrossRefGoogle Scholar
  9. 9.
    Brillouin L (1932) Perturbation problem and self consistent field. J Phys Radium 3:373–389CrossRefGoogle Scholar
  10. 10.
    Courant R, Hilbert D (1989) Methods of mathematical physics, vol I. Wiley, New York, pp 343–350CrossRefGoogle Scholar
  11. 11.
    Dirac PAM (1926) On the theory of quantum mechanics. Proc Roy Soc A112:661–677MATHCrossRefGoogle Scholar
  12. 12.
    Dyson FJ (1952) Divergence of perturbation theory in quantum electrodynamics. Phys Rev 85:631–632MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dyson FJ (1949) The radiation theories of Tomonaga, Schwinger and Feynman. Phys Rev 75:486–502MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dyson FJ (1949) The S‑matrix in quantum electrodynamics. Phys Rev 75:1736–1755MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Epstein ST (1954) Note on perturbation theory. Amer J Phys 22:613–614MATHCrossRefGoogle Scholar
  16. 16.
    Epstein ST (1968) Uniqueness of the energy in perturbation theory. Amer J Phys 36:165–166CrossRefGoogle Scholar
  17. 17.
    Feynman RP (1939) Forces in molecules. Phys Rev 56:340–343MATHCrossRefGoogle Scholar
  18. 18.
    Fock VA (1935) Zur Theorie des Wasserstoffatoms. Z Phys 98:145–154CrossRefGoogle Scholar
  19. 19.
    Graffi S, Grecchi V, Simon B (1970) Borel summability: Application to the anharmonic oscillator. Phys Lett B32:631–634MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grossman A (1961) Schrödinger scattering amplitude I. J Math Phys 3:710–713CrossRefGoogle Scholar
  21. 21.
    Hamermesh M (1989) Group theory and its application to physical problems. Dover, New York, pp 32–114Google Scholar
  22. 22.
    Hannabuss K (1997) Introduction to quantum theory. Clarendon, Oxford, pp 131–136MATHGoogle Scholar
  23. 23.
    Hellmann H (1937) Einführung in die Quantenchemie. Deuticke, LeipzigGoogle Scholar
  24. 24.
    Joachain J (1983) Quantum collision theory. North–Holland, AmsterdamGoogle Scholar
  25. 25.
    Kato T (1966) Perturbation theory for linear operators. Springer, New YorkMATHGoogle Scholar
  26. 26.
    Kato T (1949) On the convergence of the perturbation method I. Progr Theor Phys 4:514–523CrossRefGoogle Scholar
  27. 27.
    Kramers HA (1957) Quantum mechanics. North-Holland, Amsterdam, pp 198–202MATHGoogle Scholar
  28. 28.
    Krieger JB (1968) Asymptotic properties of perturbation theory. J Math Phys 9:432–435MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Landau LD, Lifshitz EM (1960) Mechanics. Pergamon Press, Oxford, p 129MATHGoogle Scholar
  30. 30.
    Lippmann BA, Schwinger J (1950) Variational principles for scattering processes I. Phys Rev 79:469–480MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Loeffel J, Martin A, Wightman A, Simon B (1969) Padé approximants and the anharmonic oscillator. Phys Lett B 30:656–658CrossRefGoogle Scholar
  32. 32.
    Padé H (1899) Sur la représentation approchée d'une fonction pour des fonctions rationelles. Ann Sci Éco Norm Sup Suppl 9(3):1–93Google Scholar
  33. 33.
    Rayleigh JW (1894–1896) The theory of sound, vol I. Macmillan, London, pp 115–118Google Scholar
  34. 35.
    Reed M, Simon B (1975) Methods of modern mathematical physics, vol II. Academic Press, New York, pp 282–283Google Scholar
  35. 34.
    Reed M, Simon B (1978) Methods of modern mathematical physics, vol IV. Academic Press, New York, pp 10–44Google Scholar
  36. 36.
    Rellich F (1937) Störungstheorie der Spektralzerlegung I. Math Ann 113:600–619MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rellich F (1937) Störungstheorie der Spektralzerlegung II. Math Ann 113:677–685MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Rellich F (1939) Störungstheorie der Spektralzerlegung III. Math Ann 116:555–570MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rellich F (1940) Störungstheorie der Spektralzerlegung IV. Math Ann 117:356–382MathSciNetCrossRefGoogle Scholar
  40. 40.
    Riesz F, Sz.-Nagy B (1968) Leçons d'analyse fonctionelle. Gauthier-Villars, Paris, pp 143–188Google Scholar
  41. 41.
    Rollnik H (1956) Streumaxima und gebundene Zustände. Z Phys 145:639–653MATHCrossRefGoogle Scholar
  42. 42.
    Sakurai JJ (1967) Advanced quantum mechanics. Addison-Wesley, Reading, pp 39–40Google Scholar
  43. 43.
    Scadron M, Weinberg S, Wright J (1964) Functional analysis and scattering theory. Phys Rev 135:B202-B207MathSciNetCrossRefGoogle Scholar
  44. 44.
    Schrödinger E (1926) Quantisierung als Eigenwertproblem. Ann Phys 80:437–490Google Scholar
  45. 45.
    Schwartz J (1960) Some non-self‐adjoint operators. Comm Pure Appl Math 13:609–639MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Simon B (1970) Coupling constant analyticity for the anharmonic oscillator. Ann Phys 58:76–136CrossRefGoogle Scholar
  47. 47.
    Simon B (1991) Fifty years of eigenvalue perturbation theory. Bull Am Math Soc 24:303–319MATHCrossRefGoogle Scholar
  48. 48.
    Thirring W (2002) Quantum mathematical physics. Springer, Berlin, p 177Google Scholar
  49. 49.
    von Neumann J, Wigner E (1929) Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys Z 30:467–470MATHGoogle Scholar
  50. 50.
    Watson G (1912) A theory of asymptotic series. Philos Trans Roy Soc Lon Ser A 211:279–313CrossRefGoogle Scholar
  51. 51.
    Weyl H (1931) The theory of groups and quantum mechanics. Dover, New YorkMATHGoogle Scholar
  52. 52.
    Wigner EP (1935) On a modification of the Rayleigh–Schrödinger perturbation theory. Math Natur Anz (Budapest) 53:477–482Google Scholar
  53. 53.
    Wigner EP (1959) Group theory and its application to the quantum mechanics of atomic spectra. Academic Press, New YorkMATHGoogle Scholar
  54. 54.
    Yosida K (1991) Lectures on differential and integral equations. Dover, New York, pp 115–131MATHGoogle Scholar
  55. 55.
    Yukalov VI, Yukalova EP (2007) Methods of self similar factor approximants. Phys Lett A 368:341–347CrossRefGoogle Scholar
  56. 56.
    Zemach C, Klein A (1958) The Born expansion in non‐relativistic quantum theory I. Nuovo Cimento 10:1078–1087MathSciNetMATHCrossRefGoogle Scholar

Books and Reviews

  1. 57.
    Hirschfelder JO, Byers Brown W, Epstein ST (1964) Recent developments in perturbation theory. In: Advances in quantum chemistry, vol 1. Academic Press, New York, pp 255–374Google Scholar
  2. 58.
    Killingbeck J (1977) Quantum‐mechanical perturbation theory. Rep Progr Phys 40:963–1031CrossRefGoogle Scholar
  3. 59.
    Mayer I (2003) Simple theorems, proofs and derivations in quantum chemistry. Kluwer Academic/Plenum Publishers, New York, pp 69–120Google Scholar
  4. 60.
    Morse PM, Feshbach H (1953) Methods of theoretical physics, part 2. McGraw-Hill, New York, pp 1001–1106Google Scholar
  5. 61.
    Wilcox CH (1966) Perturbation theory and its applications in quantum mechanics. Wiley, New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Luigi E. Picasso
    • 1
    • 2
  • Luciano Bracci
    • 1
    • 2
  • Emilio d'Emilio
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di PisaPisaItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di PisaPisaItaly