Skip to main content

Perturbation Theory for Non-smooth Systems

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

Preliminaries

Vector Fields near the Boundary

Generic Bifurcation

Singular Perturbation Problem in 2D

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Non‐smooth dynamical system:

Systems derived from ordinary differential equations when the non‐uniqueness of solutions is allowed. In this article we deal with discontinuous vector fields in R n where the discontinuities are concentrated in a codimension‐one surface.

Bifurcation:

In a k‑parameter family of systems, a bifurcation is a parameter value at which the phase portrait is not structurally stable.

Typical singularity:

Are points on the discontinuity set where the orbits of the system through them must be distinguished.

Bibliography

Primary Literature

  1. Alexander JC, Seidman TI (1998) Sliding modes in intersecting switching surfaces I: Blending. Houston J Math 24(3):545–569

    MathSciNet  MATH  Google Scholar 

  2. Alexander JC, Seidman TI (1999) Sliding modes in intersecting switching surfaces II: Hysteresis. Houston J Math 25:185–211

    MathSciNet  MATH  Google Scholar 

  3. Andronov A, Pontryagin S (1937) Structurally stable systems. Dokl Akad Nauk SSSR 14:247–250

    Google Scholar 

  4. Andronov AA, Vitt AA, Khaikin SE (1966) Theory of ocillators, Dover, New York

    Google Scholar 

  5. Anosov DV (1959) Stability of the equilibrium positions in relay systems. Autom Remote Control XX(2):135–149

    MathSciNet  Google Scholar 

  6. Arnold VI (1983) Methods in the theory of ordinary differential equations. Springer, New York

    Book  MATH  Google Scholar 

  7. Bazykin AD (1998) Nonlinear dynamics of interacting populations. World Sc. Publ. Co. Inc., River–Edge, NJ

    Google Scholar 

  8. Bonnard B, Chyba M (2000) Singular trajectories and their role in control theory. Mathématiques and Applications, vol 40. Springer, Berlin

    Google Scholar 

  9. Broucke ME, Pugh CC, Simić SN (2001) Structural stability of piecewise smooth systems. Comput Appl Math 20(1–2):51–89

    Google Scholar 

  10. Buzzi C, Silva PR, Teixeira MA (2006) A singular approach to discontinuous vector fields on the plane. J Differ Equ 23:633–655

    Article  Google Scholar 

  11. Chillingworth DR (2002) J.(4-SHMP) Discontinuity geometry for an impact oscillator. Dyn Syst 17(4):389–420

    Article  MathSciNet  MATH  Google Scholar 

  12. Chua LO (1992) The genesis of Chua's circuit. AEU 46:250

    Google Scholar 

  13. Coll B, Gasull A, Prohens R (2001) Degenerate Hopf bifurcations in discontinuous planar systems. J Math Anal Appl 253(2):671–690

    Article  MathSciNet  MATH  Google Scholar 

  14. di Bernardo M, Budd C, Champneys AR, Kowalczyk P, Nordmark AB, Olivar G, Piiroinen PT (2005) Bifurcations in non‐smooth dynamical systems. Bristol Centre for Applied Nonlinear Mathematics, N. 2005-4, Bristol

    Google Scholar 

  15. Dumortier F (1977) Singularities of vector fields. IMPA, Rio de Janeiro

    Google Scholar 

  16. Dumortier F, Roussarie R (1996) Canard cycles and center manifolds. Mem Amer Mat Soc 121:x+100

    Google Scholar 

  17. Ekeland I (1977) Discontinuités de champs hamiltoniens et existence de solutions optimales en calcul des variations. Inst Hautes Études Sci Publ Math 47:5–32

    Article  MathSciNet  MATH  Google Scholar 

  18. Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31:53–98

    Article  MathSciNet  MATH  Google Scholar 

  19. Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer Academic, Dordrecht

    Google Scholar 

  20. Flúgge-Lotz I (1953) Discontinuous automatic control. Princeton University, Princeton, pp vii+168

    Google Scholar 

  21. Garcia R, Teixeira MA (2004) Vector fields in manifolds with boundary and reversibility-an expository account. Qual Theory Dyn Syst 4:311–327

    Article  MathSciNet  Google Scholar 

  22. Gasull A, Torregrosa J (2003) Center‐focus problem for discontinuous planar differential equations. Int J Bifurc Chaos Appl Sci Eng 13(7):1755–1766

    Article  MathSciNet  MATH  Google Scholar 

  23. Henry P (1972) Diff. equations with discontinuous right-hand side for planning procedures. J Econ Theory 4:545–551

    Article  MathSciNet  Google Scholar 

  24. Hogan S (1989) On the dynamics of rigid-block motion under harmonic forcing. Proc Roy Soc London A 425:441–476

    Article  MathSciNet  Google Scholar 

  25. Ito T (1979) A Filippov solution of a system of diff. eq. with discontinuous right-hand sides. Econ Lett 4:349–354

    Article  Google Scholar 

  26. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York, pp xxii+808

    MATH  Google Scholar 

  27. Jacquemard A, Teixeira MA (2003) Computer analysis of periodic orbits of discontinuous vector fields. J Symbol Comput 35:617–636

    Article  MathSciNet  MATH  Google Scholar 

  28. Jacquemard A, Teixeira MA (2003) On singularities of discontinuous vector fields. Bull Sci Math 127:611–633

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacquemard A, Teixeira MA (2005) Invariant varieties of discontinuous vector fields. Nonlinearity 18:21–43

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones C (1995) Geometric singular perturbation theory. C.I.M.E. Lectures, Montecatini Terme, June 1994, Lecture Notes in Mathematics 1609. Springer, Heidelberg

    Google Scholar 

  31. Kozlova VS (1984) Roughness of a discontinuous system. Vestinik Moskovskogo Universiteta, Matematika 5:16–20

    Google Scholar 

  32. Kunze M, Kupper T (1997) Qualitative bifurcation analysis of a non‐smooth friction oscillator model. Z Angew Math Phys 48:87–101

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuznetsov YA et al (2003) One‐parameter bifurcations in planar Filippov systems. Int J Bifurac Chaos 13:2157–2188

    Article  MATH  Google Scholar 

  34. Llibre J, Teixeira MA (1997) Regularization of discontinuous vector fields in dimension 3. Discret Contin Dyn Syst 3(2):235–241

    Article  MathSciNet  MATH  Google Scholar 

  35. Luo CJ (2006) Singularity and dynamics on discontinuous vector fields. Monograph Series on Nonlinear Science and Complexity. Elsevier, New York, pp i+310

    Google Scholar 

  36. Machado AL, Sotomayor J (2002) Structurally stable discontinuous vector fields in the plane. Qual Theory Dyn Syst 3:227–250

    Article  MathSciNet  MATH  Google Scholar 

  37. Manosas F, Torres PJ (2005) Isochronicity of a class of piecewise continuous oscillators. Proc of AMS 133(10):3027–3035

    Article  MathSciNet  MATH  Google Scholar 

  38. Medrado J, Teixeira MA (1998) Symmetric singularities of reversible vector fields in dimension three. Physica D 112:122–131

    Article  MathSciNet  MATH  Google Scholar 

  39. Medrado J, Teixeira MA (2001) Codimension‐two singularities of reversible vector fields in 3D. Qualit Theory Dyn Syst J 2(2):399–428

    Article  MathSciNet  Google Scholar 

  40. Percell PB (1973) Structural stability on manifolds with boundary. Topology 12:123–144

    Article  MathSciNet  MATH  Google Scholar 

  41. Seidman T (2006) Aspects of modeling with discontinuities. In: N'Guerekata G (ed) Advances in Applied and Computational Mathematics Proc Dover Conf, Cambridge. http://www.umbc.edu/~seideman

  42. Sotomayor J (1974) Structural stability in manifolds with boundary. In: Global analysis and its applications, vol III. IEAA, Vienna, pp 167–176

    Google Scholar 

  43. Sotomayor J, Teixeira MA (1988) Vector fields near the boundary of a 3‑manifold. Lect Notes in Math, vol 331. Springer, Berlin-Heidelberg, pp 169–195

    Google Scholar 

  44. Sotomayor J, Teixeira MA (1996) Regularization of discontinuous vector fields. International Conference on Differential Equations, Lisboa. World Sc, Singapore, pp 207–223

    Google Scholar 

  45. Sussmann H (1979) Subanalytic sets and feedback control. J Differ Equ 31:31–52

    Article  MathSciNet  MATH  Google Scholar 

  46. Teixeira MA (1977) Generic bifurcations in manifolds with boundary. J Differ Equ 25:65–89

    Article  MathSciNet  MATH  Google Scholar 

  47. Teixeira MA (1979) Generic bifurcation of certain singularities. Boll Unione Mat Ital 16-B:238–254

    MathSciNet  Google Scholar 

  48. Teixeira MA (1990) Stability conditions for discontinuous vector fields. J Differ Equ 88:15–24

    Article  MathSciNet  MATH  Google Scholar 

  49. Teixeira MA (1991) Generic Singularities of Discontinuous Vector Fields. An Ac Bras Cienc 53(2):257–260

    MathSciNet  Google Scholar 

  50. Teixeira MA (1993) Generic bifurcation of sliding vector fields. J Math Anal Appl 176:436–457

    Article  MathSciNet  MATH  Google Scholar 

  51. Teixeira MA (1997) Singularities of reversible vector fields. Physica D 100:101–118

    Article  MathSciNet  MATH  Google Scholar 

  52. Teixeira MA (1999) Codimension‐two singularities of sliding vector fields. Bull Belg Math Soc 6(3):369–381

    MathSciNet  MATH  Google Scholar 

  53. Vishik SM (1972) Vector fields near the boundary of a manifold. Vestnik Moskovskogo Universiteta, Matematika 27(1):13–19

    MathSciNet  Google Scholar 

  54. Zelikin MI, Borisov VF (1994) Theory of chattering control with applications to astronautics, robotics, economics, and engineering. Birkhäuser, Boston

    Book  MATH  Google Scholar 

Books and Reviews

  1. Agrachev AA, Sachkov YL (2004) Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences, 87. Control theory and optimization, vol II. Springer, Berlin, pp xiv+412

    Google Scholar 

  2. Barbashin EA (1970) Introduction to the theory of stability. Wolters–Noordhoff Publishing, Groningen. Translated from the Russian by Transcripta Service, London. Edited by T. Lukes, pp 223

    Google Scholar 

  3. Brogliato B (ed) (2000) Impacts in mechanical systems. Lect Notes in Phys, vol 551. Springer, Berlin, pp 160

    Google Scholar 

  4. Carmona V, Freire E, Ponce E, Torres F (2005) Bifurcation of invariant cones in piecewise linear homogeneous systems. Int J Bifurc Chaos 15(8):2469–2484

    Article  MathSciNet  MATH  Google Scholar 

  5. Davydov AA (1994) Qualitative theory of control systems. American Mathematical Society, Providence, RI. (English summary) Translated from the Russian manuscript by V. M. Volosov. Translations of Mathematical Monographs, 141, pp viii+147

    MATH  Google Scholar 

  6. Dercole F, Gragnani F, Kuznetsov YA, Rinaldi S (2003) Numerical sliding bifurcation analysis: an application to a relay control system. IEEE Trans Circuit Systems – I: Fund Theory Appl 50:1058–1063

    Google Scholar 

  7. Glocker C (2001) Set‐valued force laws: dynamics of non‐smooth systems. Lecture Notes in Applied Mechanics, vol 1. Springer, Berlin

    Google Scholar 

  8. Hogan J, Champneys A, Krauskopf B, di Bernardo M, Wilson E, Osinga H, Homer M (eds) Nonlinear dynamics and chaos: Where do we go from here? Institute of Physics Publishing (IOP), Bristol, pp xi+358, 2003

    Google Scholar 

  9. Huertas JL, Chen WK, Madan RN (eds) (1997) Visions of nonlinear science in the 21st century, Part I. Festschrift dedicated to Leon O. Chua on the occasion of his 60th birthday. Papers from the workshop held in Sevilla, June 26, 1996. Int J Bifurc Chaos Appl Sci Eng 7 (1997), no. 9. World Scientific Publishing Co. Pte. Ltd., Singapore, pp i–iv, pp 1907–2173

    Google Scholar 

  10. Komuro M (1990) Periodic bifurcation of continuous piece-wise vector fields. In: Shiraiwa K (ed) Advanced series in dynamical systems, vol 9. World Sc, Singapore

    Google Scholar 

  11. Kunze M (2000) Non‐smooth dynamical systems. Lecture Notes in Mathematics, vol 1744. Springer, Berlin, pp x+228

    Google Scholar 

  12. Kunze M, Küpper T (2001) Non‐smooth dynamical systems: an overview. In: Fiedler B (ed) Ergodic theory, analysis, and efficient simulation of dynamical systems. Springer, Berlin, pp 431–452

    Google Scholar 

  13. Llibre J, Silva PR, Teixeira MA (2007) Regularization of discontinuous vector fields on R 3 via singular perturbation. J Dyn Differ Equ 19(2):309–331

    Article  MATH  Google Scholar 

  14. Martinet J (1974) Singularités des fonctions et applications différentiables. Pontifícia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, pp xiii+181 (French)

    Google Scholar 

  15. Minorsky N (1962) Nonlinear oscillations. D Van Nostrand Co. Inc., Princeton, N.J., Toronto, London, New York, pp xviii+714

    Google Scholar 

  16. Minorsky N (1967) Théorie des oscillations. Mémorial des Sciences Mathématiques Fasc, vol 163. Gauthier-Villars, Paris, pp i+114 (French)

    Google Scholar 

  17. Minorsky N (1969) Theory of nonlinear control systems. McGraw-Hill, New York, London, Sydney, pp xx+331

    Google Scholar 

  18. Ostrowski JP, Burdick JW (1997) Controllability for mechanical systems with symmetries and constraints. Recent developments in robotics. Appl Math Comput Sci 7(2):305–331

    MathSciNet  MATH  Google Scholar 

  19. Peixoto MC, Peixoto MM (1959) Structural Stability in the plane with enlarged conditions. Anais da Acad Bras Ciências 31:135–160

    MathSciNet  MATH  Google Scholar 

  20. Rega G, Lenci S (2003) Nonsmooth dynamics, bifurcation and control in an impact system. Syst Anal Model Simul Arch 43(3), Gordon and Breach Science Publishers, Inc. Newark, pp 343–360

    Google Scholar 

  21. Seidman T (1995) Some limit problems for relays. In: Lakshmikantham V (ed) Proc First World Congress of Nonlinear Analysis, vol I. Walter de Gruyter, Berlin, pp 787–796

    Google Scholar 

  22. Sotomayor J (1974) Generic one‐parameter families of vector fields on 2‑manifolds. Publ Math IHES 43:5–46

    MathSciNet  Google Scholar 

  23. Szmolyan P (1991) Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J Differ Equ 92:252–281

    Article  MathSciNet  MATH  Google Scholar 

  24. Teixeira MA (1985) Topological invariant for discontinuous vector fields. Nonlinear Anal TMA 9(10)1073–1080

    Article  MathSciNet  MATH  Google Scholar 

  25. Utkin V (1978) Sliding modes and their application in variable structure systems. Mir, Moscow

    MATH  Google Scholar 

  26. Utkin V (1992) Sliding Modes in Control and Optimization. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Teixeira, M.A. (2012). Perturbation Theory for Non-smooth Systems. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_83

Download citation

Publish with us

Policies and ethics