Skip to main content

Perturbation of Systems with Nilpotent Real Part

  • Reference work entry
Mathematics of Complexity and Dynamical Systems
  • 253 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Complex and Real Jordan Canonical Forms

Nilpotent Perturbation and Formal Normal Forms of Vector Fields and Maps Near a Fixed Point

Loss of Gevrey Regularity in Siegel Domains in the Presence of Jordan Blocks

First-Order Singular Partial Differential Equations

Normal Forms for Real Commuting Vector Fields with Linear Parts Admitting Nontrivial Jordan Blocks

Analytic Maps near a Fixed Point in the Presence of Jordan Blocks

Weakly Hyperbolic Systems and Nilpotent Perturbations

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Perturbation :

Typically, one starts with an “initial” system S 0, which is usually simple and/or well understood. We perturb the system by adding a (small) perturbation R so that the new object becomes \({S_0+R}\). In our context the typical examples for S 0 will be systems of linear ordinary differential equations with constant coefficients in \({{\mathbb{R}}^n}\) or the associated linear vector fields.

Nilpotent linear transformation:

Let \({A\colon {\mathbb{K}}^n \mapsto {\mathbb{K}}^n}\) be a linear map, where \({{\mathbb{K}}={\mathbb{R}}}\) or \({{\mathbb{K}}={\mathbb{C}}}\). We call A nilpotent if there exists a positive integer r such that the rth iteration A r become the zero map, in short \({A^r= 0}\).

Gevrey spaces :

Let Ω be an open domain in \({{\mathbb{R}}^n}\) and let \({\sigma \geq 1}\). The Gevrey space \({G^\sigma (\Omega)}\) stands for the set of all functions \({f\in C^\infty(\Omega)}\) such that for every compact subset \({K\subset\subset \Omega}\) one can find \({C=C_{K,f} > 0}\) such that

$$ \sup_{x\in K} |\partial^\alpha_x f(x)|\leq C^{|\alpha|+1} \alpha!^\sigma $$
(1)

for all \( \alpha =(\alpha_1, \ldots, \alpha_n)\in {\mathbb{Z}}_+^n \), \( \alpha! = \alpha_1! \ldots \alpha_n! \), \( |\alpha|:=\alpha_1+\ldots + \alpha_n \). If \( \sigma =1 \) we recapture the space of real analytic functions in Ω while the scale \( G^\sigma (\Omega) \), \( \sigma > 1 \), serves as an intermediate space between the real analytic functions and the set of all \( C^\infty \) functions in Ω. By the Stirling formula one may replace \( \alpha!^\sigma \) by \({|\alpha|!^\sigma}\), \( |\alpha|^{\sigma |\alpha|}\) or \( \Gamma (\sigma |\alpha|) \), where \( \Gamma(z) \) stands for the Euler Gamma function cf. the book of Rodino [41] for more details on the Gevrey spaces.

One associates also Gevrey index to formal power series, namely, given a (formal) power series

$$ f(x)= \sum_\alpha f_\alpha x^\alpha $$

this is in the formal Gevrey space \({G^\sigma_f({\mathbb{\mathbb{K}}}^n)}\) if there exist \({C > 0}\) and \({R > 0}\) such that

$$ |f_\alpha| \leq C^{|\alpha|+1} |\alpha|!^{\sigma-1}$$
(2)

for all \({\alpha \in {\mathbb Z}^n_+}\).

In fact, one can find in the literature another definition of the formal Gevrey spaces \({G^\tau_f}\) of index τ, namely replacing \({\sigma-1}\) by τ (see e. g. Ramis [40]).

Bibliography

  1. Abate M (2000) Diagonalization of nondiagonalizable discrete holomorphic dynamical systems. Amer J Math 122:757–781

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold VI (1971) Matrices depending on parameters. Uspekhi Mat Nauk 26:101–114 (in Russian); Russ Math Surv 26:29–43

    Google Scholar 

  3. Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer, New York

    Book  MATH  Google Scholar 

  4. Arnold VI, Ilyashenko YU (1988) In: Anosov DV, Arnold VI (eds) Encyclopedia of Math Sci, vol 1. Dynamical Systems I. Springer, New York, pp 1–155

    Google Scholar 

  5. Bambusi D, Cicogna G, Gaeta G, Marmo G (1998) Normal forms, symmetry and linearization of dynamical systems. J Phys A 31:5065–5082

    Article  MathSciNet  MATH  Google Scholar 

  6. Belitskii GR (1978) Equivalence and normal forms of germs of smooth mappings. Uspekhi Mat Nauk 33:95–155, 263 (in Russian); Russ Math Surv 33:107–177

    MathSciNet  Google Scholar 

  7. Belitskii GR (1979) Normal forms, invariants, and local mappings. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  8. Bove A, Nishitani T (2003) Necessary conditions for hyperbolic systems. II. Jpn J Math (NS) 29:357–388

    MathSciNet  MATH  Google Scholar 

  9. Bruno AD (1971) The analytic form of differential equations. Tr Mosk Mat O-va 25:119–262; (1972) 26:199–239 (in Russian); See also (1971) Trans Mosc Math Soc 25:131–288; (1972) 26:199–239

    Google Scholar 

  10. Bruno AD, Walcher S (1994) Symmetries and convergence of normalizing transformations. J Math Anal Appl 183:571–576

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen KT (1965) Diffeomorphisms: \({C^\infty}\)-realizations of formal properties. Amer J Math 87:140–157

    Article  MathSciNet  MATH  Google Scholar 

  12. Cicogna G, Gaeta G (1999) Symmetry and perturbation theory in nonlinear dynamics. Lecture Notes in Physics. New Series m: Monographs, vol 57. Springer, Berlin

    Google Scholar 

  13. Cicogna G, Walcher S (2002) Convergence of normal form transformations: the role of symmetries. (English summary) Symmetry and perturbation theory. Acta Appl Math 70:95–111

    Article  MathSciNet  MATH  Google Scholar 

  14. Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw‐Hill, New York

    MATH  Google Scholar 

  15. Craig W (1987) Nonstrictly hyperbolic nonlinear systems. Math Ann 277:213–232

    Article  MathSciNet  MATH  Google Scholar 

  16. Cushman R, Sanders JA (1990) A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part. In: Stanton D (ed) Invariant theory and tableaux. IMA Vol Math Appl, vol 19. Springer, New York, pp 82–106

    Google Scholar 

  17. DeLatte D, Gramchev T (2002) Biholomorphic maps with linear parts having Jordan blocks: Linearization and resonance type phenomena. Math Phys Electron J 8(2):1–27

    MathSciNet  Google Scholar 

  18. Dumortier F, Roussarie R (1980) Smooth linearization of germs of R 2‑actions and holomorphic vector fields. Ann Inst Fourier Grenoble 30:31–64

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaeta G, Walcher S (2005) Dimension increase and splitting for Poincaré‐Dulac normal forms. J Nonlinear Math Phys 12(1):327–342

    Article  MathSciNet  Google Scholar 

  20. Gaeta G, Walcher S (2006) Embedding and splitting ordinary differential equations in normal form. J Differ Equ 224:98–119

    Article  MathSciNet  MATH  Google Scholar 

  21. Gantmacher FR (1959) The theory of matrices, vols 1, 2. Chelsea, New York

    Google Scholar 

  22. Ghedamsi M, Gourdin D, Mechab M, Takeuchi J (2002) Équations et systèmes du type de Schrödinger à racines caractéristiques de multiplicité deux. Bull Soc Roy Sci Liège 71:169–187

    MathSciNet  MATH  Google Scholar 

  23. Gramchev T (2002) On the linearization of holomorphic vector fields in the Siegel Domain with linear parts having nontrivial Jordan blocks. In: Abenda S, Gaeta G, Walcher S (eds) Symmetry and perturbation theory, Cala Gonone, 16–22 May 2002. World Sci. Publ., River Edge, pp 106–115

    Google Scholar 

  24. Gramchev T, Tolis E (2006) Solvability of systems of singular partial differential equations in function spaces. Integral Transform Spec Funct 17:231–237

    Article  MathSciNet  MATH  Google Scholar 

  25. Gramchev T, Walcher S (2005) Normal forms of maps: formal and algebraic aspects. Acta Appl Math 85:123–146

    Article  MathSciNet  Google Scholar 

  26. Gramchev T, Yoshino M (2007) Normal forms for commuting vector fields near a common fixed point. In: Gaeta G, Vitolo R, Walcher S (eds) Symmetry and Perturbation theory, Oltranto, 2–9 June 2007. World Sci Publ, River Edge, pp 203–217

    Google Scholar 

  27. Hasselblatt B, Katok A (2003) A first course in dynamics: with a panorama of recent developments. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Herman M (1987) Recent results and some open questions on Siegel's linearization theorem of germs of complex analytic diffeomorphisms of C n near a fixed point. VIIIth international congress on mathematical physics, Marseille 1986. World Sci Publ, Singapore, pp 138–184

    Google Scholar 

  29. Hibino M (1999) Divergence property of formal solutions for first order linear partial differential equations. Publ Res Inst Math Sci 35:893–919

    Article  MathSciNet  MATH  Google Scholar 

  30. Hibino M (2003) Borel summability of divergent solutions for singular first order linear partial differential equations with polynomial coefficients. J Math Sci Univ Tokyo 10:279–309

    MathSciNet  MATH  Google Scholar 

  31. Hibino M (2006) Formal Gevrey theory for singular first order quasi–linear partial differential equations. Publ Res Inst Math Sci 42:933–985

    Article  MathSciNet  MATH  Google Scholar 

  32. Il'yashenko Y (1979) Divergence of series reducing an analytic differential equation to linear form at a singular point. Funct Anal Appl 13:227–229

    MathSciNet  Google Scholar 

  33. Iooss G, Lombardi E (2005) Polynomial normal forms with exponentially small remainder for vector fields. J Differ Equ 212:1–61

    Article  MathSciNet  MATH  Google Scholar 

  34. Kajitani K (1979) Cauchy problem for non–strictly hyperbolic systems. Publ Res Inst Math 15:519–550

    Article  MathSciNet  MATH  Google Scholar 

  35. Katok A, Katok S (1995) Higher cohomology for Abelian groups of toral automorphisms. Ergod Theory Dyn Syst 15:569–592

    Article  MathSciNet  MATH  Google Scholar 

  36. Murdock J (2002) On the structure of nilpotent normal form modules. J Differ Equ 180:198–237

    Article  MathSciNet  MATH  Google Scholar 

  37. Murdock J, Sanders JA (2007) A new transvectant algorithm for nilpotent normal forms. J Differ Equ 238:234–256

    Article  MathSciNet  MATH  Google Scholar 

  38. Petkov VM (1979) Microlocal forms for hyperbolic systems. Math Nachr 93:117–131

    Article  MathSciNet  MATH  Google Scholar 

  39. Pérez Marco R (2001) Total convergence or small divergence in small divisors. Commun Math Phys 223:451–464

    Google Scholar 

  40. Ramis J-P (1984) Théorèmes d'indices Gevrey pour les équations différentielles ordinaires. Mem Amer Math Soc 48:296

    MathSciNet  Google Scholar 

  41. Rodino L (1993) Linear partial differential operators in Gevrey spaces. World Science, Singapore

    Book  MATH  Google Scholar 

  42. Sanders JA (2005) Normal form in filtered Lie algebra representations. Acta Appl Math 87:165–189

    Article  MathSciNet  MATH  Google Scholar 

  43. Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Applied Mathematical Sciences, vol 59. Springer, New York

    Google Scholar 

  44. Siegel CL (1942) Iteration of analytic functions. Ann Math 43:607–614

    Article  MATH  Google Scholar 

  45. Sternberg S (1958) The structure of local homeomorphisms. II, III. Amer J Math 80:623–632, 81:578–604

    Google Scholar 

  46. Stolovitch L (2000) Singular complete integrability. Publ Math IHES 91:134–210

    Google Scholar 

  47. Stolovitch L (2005) Normalisation holomorphe d'algèbres de type Cartan de champs de vecteurs holomorphes singuliers. Ann Math 161:589–612

    Article  MathSciNet  MATH  Google Scholar 

  48. Taylor M (1981) Pseudodifferential operators. Princeton Mathematical Series, vol 34. Princeton University Press, Princeton

    Google Scholar 

  49. Thiffeault J-L, Morison PJ (2000) Classification and Casimir invariants of Lie–Poisson brackets. Physica D 136:205–244

    Article  MathSciNet  MATH  Google Scholar 

  50. Vaillant J (1999) Invariants des systèmes d'opérateurs différentiels et sommes formelles asymptotiques. Jpn J Math (NS) 25:1–153

    MathSciNet  MATH  Google Scholar 

  51. Yamahara H (2000) Cauchy problem for hyperbolic systems in Gevrey class. A note on Gevrey indices. Ann Fac Sci Toulouse Math 19:147–160

    Article  MathSciNet  Google Scholar 

  52. Yoccoz J-C (1995) A remark on Siegel's theorem for nondiagonalizable linear part. Manuscript, 1978; See also Théorème de Siegel, nombres de Bruno e polynômes quadratic. Astérisque 231:3–88

    MathSciNet  Google Scholar 

  53. Yoshino M (1999) Simultaneous normal forms of commuting maps and vector fields. In: Degasperis A, Gaeta G (eds) Symmetry and perturbation theory SPT 98, Rome, 16–22 December 1998. World Scientific, Singapore, pp 287–294

    Google Scholar 

  54. Yoshino M, Gramchev T (2008) Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks. Ann Inst Fourier (Grenoble) 58:263–297

    Article  MathSciNet  MATH  Google Scholar 

  55. Zung NT (2002) Convergence versus integrability in Poincaré‐Dulac normal form. Math Res Lett 9:217–228

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Gramchev, T. (2012). Perturbation of Systems with Nilpotent Real Part. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_78

Download citation

Publish with us

Policies and ethics