Skip to main content

Periodic Orbits of Hamiltonian Systems

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition

Introduction

Periodic Solutions

Poincaré Map and Floquet Operator

Hamiltonian Systems with Symmetries

The Variational Principles and Periodic Orbits

Further Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Hamiltonian:

are called all those dynamical systems whose equations of motion form a vector field X H defined on a symplectic manifold (\({\mathcal{P},\omega}\)), and X H is given by \({i_{X_H}\omega=\text{d} H}\), where \({H\colon\mathcal{P}\rightarrow \mathbb{R}}\) is the Hamiltonian function.

Poisson systems:

These are dynamical systems whose vector field X H can be described through a Poisson structure (Poisson brackets ) defined on the ring of differentiable functions on a given manifold that is not necessarily symplectic (see “Hamiltonian Equations”). Note that on any symplectic manifold there is a natural Poisson structure such that any Hamiltonian system admits a Poisson formulation, but the contrary is false. The Poisson formulation of the dynamics is a generalization of the Hamiltonian one.

A periodic orbit:

\({\phi(.)}\) is a solution of the equations of motion that repeats itself after a certain time \({T > 0}\) called a period, that is, \({\phi(t+T)=\phi(t)}\) for every t.

Poincaré section/map:

Given a periodic orbit \({\phi(.)}\) a Poincaré section is a hyperplane S intersecting the curve \({\{\phi(t)\colon t\in [0,T)\}}\) transversely. The associated Poincaré map Π maps neighborhoods of S into itself by following the orbit \({\phi(.)}\) (see Definition 10).

A Hamiltonian system with symmetry:

is a Hamiltonian system in which there is a group G acting on \({\mathcal{P}}\), i. e., there is a map \({\Phi\colon G\times\mathcal{P}\mapsto \mathcal{P}}\), with Φ preserving the Hamiltonian and the symplectic form.

Relative periodic orbit:

Let G be a symmetry group for the dynamics. A path \({\phi(.)}\) is a relative periodic orbit if solves the equations of motion and repeats itself up to a group action after a certain time \({T > 0}\), that is, \({\phi(t+T)=\Phi_g(\phi(t))}\) for every t and for some \({g\in G}\).

Continuation:

Continuation is a procedure based on the implicit function theorem (IFT) that allows one to extend the solution of an equation for different values of the parameters. Let \({f(x,\epsilon)=0}\) be an equation in \({x\in\mathbb{R}^n}\) where f is differentiable and \({\epsilon\geq 0}\) a parameter. Assume that \({f(x_0,0)=0}\); a curve \({x(\epsilon)}\) is called a continued solution if \({x(0)=x_0}\) and \({f(x(\epsilon),\epsilon)=0}\) for some \({\epsilon\geq 0}\). In general \({x(\epsilon)}\) exists whenever the IFT can be applied, that is, if \({D_x f(x,\epsilon)}\) is invertible at (\({x_0,0}\)).

Liapunov–Schmidt reduction:

Let f be a function on a Banach space. Liapunov–Schmidt reduction is a procedure that allows one to study \({f(x,\epsilon)=0}\) under the condition that the kernel of Df is not empty but it is finite‐dimensional.

Variational principles:

The principles which aim to translate the problem of solving the equations of motion of a dynamical system (e. g., Hamiltonian systems) into the problem of finding the critical points of certain functionals defined on spaces of all possible trajectories of the given system.

Bibliography

  1. Abraham R, Marsden J (1978) Foundations of Mechanics. Benjamin‐Cummings, Reading

    MATH  Google Scholar 

  2. Ambrosetti A, Coti V (1994) Zelati Periodic Solutions of singular Lagrangian Systems. Birkhäuser, Boston

    Google Scholar 

  3. Ambrosetti A, Prodi G (1993) A primer on Nonlinear Analysis. CUP, Cambridge UK

    Google Scholar 

  4. Arms JM, Cushman R, Gotay MJ (1991) A universal reduction procedure for Hamiltonian group actions. In: Ratiu TS (ed) The Geometry of Hamiltonian Systems. Springer, New York, pp 33–51

    Chapter  Google Scholar 

  5. Arnold VI (1989) Mathematical Methods of Classical Mechanics. Springer, New York

    Book  Google Scholar 

  6. Benci V (1984) Normal modes of a Lagrangian system constrained in a potential well. Annales de l'IHP section C tome 5(1):379–400

    Google Scholar 

  7. Benci V (1984) Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems. Annales de l'IHP section C tome 5(1):401–412

    Google Scholar 

  8. Benci V (1986) Periodic solutions for Lagrangian systems on a compact manifold. J Diff Eq 63:135–161

    Article  MathSciNet  MATH  Google Scholar 

  9. Birkhoff GD (1927) Dynamical Systems with two degrees of freedom. Trans Am Math Soc 18:199–300

    Article  MathSciNet  Google Scholar 

  10. Birkhoff GD (1927) Dynamical Systems. Colloq. Publ. 9. Amer. Math. Soc., Providence RI

    Google Scholar 

  11. Bolotin SV, Kozlov VV (1978) Libration in systems with many degrees of freedom. J Appl Math Mech 42:256–261

    Article  MathSciNet  Google Scholar 

  12. Bott R, Tu W (1995) Differential forms in algebraic topology. Springer, New York

    Google Scholar 

  13. Bridges T (2006) Canonical multi‐symplectic structure on the total exterior algebra bundle. Proc R Soc A 462:1531–1551

    Article  MathSciNet  MATH  Google Scholar 

  14. Brown KS (1982) Cohomology of groups. Springer, New York

    Book  MATH  Google Scholar 

  15. Chang K (1991) Infinite dimensional Morse theory and multiple solution problems. Birkhäuser, Boston

    Google Scholar 

  16. Cushman R, Bates L (1997) Global aspects of classical integrable systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  17. Cushmann R, Sadowski D, Efstathiou K (2005) No polar coordinates. In: Montaldi J, Ratiu T (eds) Geometric Mechanics and Symmetry: the Peyresq Lectures. Cambridge University Press, Cambridge UK

    Google Scholar 

  18. Dell Antonio G (1995) Agomenti scelti di meccanica SISSA/ISAS Trieste. ref. ILAS/FM-19/1995

    Google Scholar 

  19. Doedel EJ, Keller HB, Kernvez JP (1991) Numerical analysis and control of bifurcation problems: (I) Bifurcation in finite dimensions. Int J Bifurcat Chaos 3(1):493–520

    Google Scholar 

  20. Doedel EJ, Keller HB, Kernvez JP (1991) Numerical analysis and control of bifurcation problems: (II) Bifurcation in infinite dimensions. Int J Bifurcat Chaos 4(1):745–772

    Google Scholar 

  21. Ekeland I (1990) Convexity methods in Hamiltonian mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Farber M (2004) Topology of Closed One-Forms. AMS, Providence

    MATH  Google Scholar 

  23. Gallavotti G (2001) Quasi periodic motions from Hipparchus to Kolmogorov. Rend Mat Acc Lincei s. 9, 12:125–152

    Google Scholar 

  24. Gluck H, Ziller W (1983) Existence of periodic motions of conservative systems. In: Bombieri E (ed) Seminar on Minimal Submanifolds. Princeton University Press, Princeton NJ

    Google Scholar 

  25. Golubitsky M, Marsden JE, Stewart I, Dellnitz M (1995) The constrained Liapunov–Schmidt procedure and periodic orbits. Fields Institute Communications 4. Fields Institute, Toronto, pp 81–127

    Google Scholar 

  26. Gordon W (1975) Conservative dynamical systems involving strong force. Trans Am Math Soc 204:113–135

    Article  MATH  Google Scholar 

  27. Guillemin V, Sternberg S (1984) Symplectic techniques in Physics. Cambridge University Press, Cambridge UK

    MATH  Google Scholar 

  28. Jost J (1995) Riemannian geometry and geometric analysis. Springer, Berlin

    MATH  Google Scholar 

  29. Klingenberg W (1978) Lectures on closed geodesics. Springer, Berlin

    Book  MATH  Google Scholar 

  30. Kozlov VV (1985) Calculus of variations in the large and classical mechanics. Russ Math Surv 40:37–71

    Article  MATH  Google Scholar 

  31. Kuznetsov YA (2004) Elements of Applied Bifurcation Theory. Springer, Berlin

    Book  MATH  Google Scholar 

  32. Leimkuhler B, Reich S (2005) Simulating Hamiltonian Dynamics. CUP, Cambridge UK

    Book  Google Scholar 

  33. Mawhin J, Willhelm M (1990) Critical point theory and Hamiltonian systems. Springer, Berlin

    Google Scholar 

  34. Marsden J, Ratiu TS, Scheurle J (2000) Reduction theory and the Lagrange–Routh equations. J Math Phys 41:3379–3429

    Article  MathSciNet  MATH  Google Scholar 

  35. McCord C, Montaldi J, Roberts M, Sbano L (2003) Relative Periodic Orbits of Symmetric Lagrangian Systems. Proc. Equadiff. World Scientific, Singapore

    Google Scholar 

  36. Meyer K, Hall GR (1991) Introduction to Hamiltonian Systems and the N-Body Problem. Springer, Berlin

    Google Scholar 

  37. Meyer K (1999) Periodic solutions of the N‑body problem. LNM, vol 1719. Springer, Berlin

    Google Scholar 

  38. Montaldi J, Buono PL, Laurent F (2005) Poltz Symmetric Hamiltonian Bifurcations. In: Montaldi J, Ratiu T (eds) Geometric Mechanics and Symmetry: the Peyresq Lectures. Cambridge University Press, Cambridge UK

    Chapter  Google Scholar 

  39. Montaldi J, Roberts M, Stewart I (1988) Periodic solutions near equilibria of symmetric Hamiltonian systems. Phil Trans R Soc Lon A 325:237–293

    Article  MathSciNet  MATH  Google Scholar 

  40. Montaldi J, Roberts M, Stewart I (1990) Existence of nonlinear normal modes of symmetric Hamiltonian systems. Nonlinearity 3:695–730

    Article  MathSciNet  MATH  Google Scholar 

  41. Montaldi J, Roberts M, Stewart I (1990) Stability of nonlinear normal modes of symmetric Hamiltonian systems. Nonlinearity 3:731–772

    Article  MathSciNet  MATH  Google Scholar 

  42. Munoz–Almaraz FJ, Freire E, Galan J, Doedel E, Vanderbauwhede (2003) A Continuation of periodic orbits in conservative and Hamiltonian systems. Physica D 181:1–38

    Google Scholar 

  43. Novikov SP (1982) The Hamiltonian formalism and a multivalued analogue of Morse theory. Russ Math Surv 37:1–56

    Article  MATH  Google Scholar 

  44. Offin D (1987) A Class of Periodic Orbits in Classical Mechanics. J Diff Equ 66:9–117

    Article  MathSciNet  Google Scholar 

  45. Ortega J, Ratiu T (1998) Singular Reduction of Poisson Manifolds. Lett Math Phys 46:359–372

    Article  MathSciNet  MATH  Google Scholar 

  46. Poincaré H (1956) Le Méthodes Nouvelles de la Mécanique Céleste. Gauthiers‐Villars, Paris

    Google Scholar 

  47. Rabinowitz PH (1986) Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Reg. Conf. Ser. No. 56, Amer. Math. Soc., Providence, RI

    Google Scholar 

  48. Ratiu T, Sousa Dias E, Sbano L, Terra G, Tudora R (2005) A crush course. In: Montaldi J, Ratiu T (eds) geometric mechanics in Geometric Mechanics and Symmetry: the Peyresq Lectures. Cambridge University Press, Cambridge UK

    Google Scholar 

  49. Sanders J, Verhulst F, Murdock J (2007) Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol 59. Springer, Berlin

    Google Scholar 

  50. Schmah T (2007) A cotangent bundle slice theorem. Diff Geom Appl 25:101–124

    Article  MathSciNet  MATH  Google Scholar 

  51. Seifert H (1948) Periodische Bewegungen mechanischer Systeme. Math Z 51:197–216

    Article  MathSciNet  MATH  Google Scholar 

  52. Simó C (2001) New families of solutions in N‑body problems. In: European Congress of Mathematics, vol I (Barcelona, 2000), pp 101–115, Progr. Math., 201. Birkhäuser, Basel

    Google Scholar 

  53. Struwe M (1990) Variational methods. Springer, Berlin

    MATH  Google Scholar 

  54. Verhulst F (1990) Nonlinear Dynamical Equations and Dynamical Systems. Springer, Berlin

    Book  MATH  Google Scholar 

  55. Weinstein A (1973) Normal Modes for Nonlinear Hamiltonian Systems. Inventiones Math 20:47–57

    Article  MATH  Google Scholar 

  56. Weinstein A (1978) Bifurcations and Hamilton Principle. Math Z 159:235–248

    Article  MathSciNet  MATH  Google Scholar 

  57. Whitehead GW (1995) Elements of homotopy theory, 3rd edn. Springer, Berlin

    Google Scholar 

  58. Wulf C, Roberts M (2002) Hamiltonian Systems Near Relative Periodic Orbits. Siam J Appl Dyn Syst 1(1):1–43

    Article  MathSciNet  Google Scholar 

  59. Yakubovich VA, Starzhinsky VM (1975) Linear Differential Equations with Periodic coefficients, vol 1:2. Wiley, UK

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Heinz Hanßmann for his critical and thorough reading of the manuscript and Ferdinand Verhulst for his useful suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Sbano, L. (2012). Periodic Orbits of Hamiltonian Systems. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_74

Download citation

Publish with us

Policies and ethics