Skip to main content

Navier–Stokes Equations : A Mathematical Analysis

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition of the Subject

Introduction

Derivation of the Navier–Stokes Equations and Preliminary Considerations

Mathematical Analysis of the Boundary Value Problem

Mathematical Analysis of the Initial‐Boundary Value Problem

Future Directions

Acknowledgment

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Steady‐State flow:

Flow where both velocity and pressure fields are time‐independent.

Three‐dimensional (or 3D) flow:

Flow where velocity and pressure fields depend on all three spatial variables.

Two‐dimensional (or planar, or 2D) flow:

Flow where velocity and pressure fields depend only on two spatial variables belonging to a portion of a plane, and the component of the velocity orthogonal to that plane is identically zero.

Local solution:

Solution where velocity and pressure fields are known to exist only for a finite interval of time.

Global solution:

Solution where velocity and pressure fields exist for all positive times.

Regular solution:

Solution where velocity and pressure fields satisfy the Navier–Stokes equations and the corresponding initial and boundary conditions in the ordinary sense of differentiation and continuity.

At times, we may interchangeably use the words “flow” and “solution”.

Basic notation:

\({\mathbb{N}}\) is the set of positive integers. \({\mathbb{R}}\) is the field of real numbers and \({\mathbb{R}^N}\), \({N\in\mathbb{N}}\), is the set of all N‑tuple \({\boldsymbol{x}=(x_1,\dots,x_N)}\). The canonical base in \({\mathbb{R}^N}\) is denoted by \({\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3,\ldots, \boldsymbol{e}_N\}\equiv\{\boldsymbol{e}_i\}}\). For \({a,b\in\mathbb{R}}\), \({b > a}\), we set \({(a,b)=\{x\in\mathbb{R}: a < x < b\}}\), \({[a,b]=\{x\in\mathbb{R}: a\le x\le b\}}\), \( [a,b)=\{x\in\mathbb{R}: a\le x < b\}\) and \({(a,b]=\{x\in\mathbb{R}: a < x\le b\}}\). By \({\bar{\mathcal{A}}}\) we indicate the closure of the subset \({\mathcal{A}}\) of \({\mathbb{R}^N}\). A domain is an open connected subset of \({\mathbb{R}^N}\). Given a second‐order tensor \({\boldsymbol{A}}\) and a vector \({\boldsymbol{a}}\), of components \({\{A_{ij}\}}\) and \({\{a_{i}\}}\), respectively, in the basis \({\{\boldsymbol{e}_{i}\}}\), by \({\boldsymbol{a}\cdot\boldsymbol{A}}\) [respectively, \({\boldsymbol{A}\cdot\boldsymbol{a}}\)] we mean the vector with components \({A_{ij}a_i}\) [respectively, \({A_{ij}a_j}\)]. (We use the Einstein summation convention over repeated indices, namely, if an index occurs twice in the same expression, the expression is implicitly summed over all possible values for that index.) Moreover, we set \({|\boldsymbol{A}|=\sqrt{A_{ij}A_{ij}}}\). If \({\boldsymbol{h}(\boldsymbol{z})\equiv\{h_i(\boldsymbol{z})\}}\) is a vector field, by \({\nabla \boldsymbol{h}}\) we denote the second‐order tensor field whose components \({\{\nabla \boldsymbol{h}\}_{ij}}\) in the given basis are given by \({\{\partial h_j/\partial z_i\}}\).

Function spaces notation:

If \({\mathcal{A}\subseteq\mathbb{R}^N}\) and \( k\in \mathbb{N}\cup\{0\}\), by \({C^k(\mathcal{A})}\) [respectively, \({C^k(\bar{\mathcal{A}})}\)] we denote the class of functions which are continuous in \({\mathcal{A}}\) up to their kth derivatives included [respectively, are bounded and uniformly continuous in \({\mathcal{A}}\) up to their kth derivatives included]. The subset of \({C^k(\mathcal{A})}\) of functions vanishing outside a compact subset of \({\mathcal{A}}\) is indicated by \({C^k_0(\mathcal{A})}\). If \({u\in C^k(\mathcal{A})}\) for all \({k\in \mathbb{N}\cup\{0\}}\), we shall write \({u\in C^\infty(\mathcal{A})}\). In an analogous way we define \({C^\infty(\bar{\mathcal{A}})}\) and \({C_0^\infty(\mathcal{A})}\). The symbols \({L^q(\mathcal{A})}\), \({W^{m,q}(\mathcal{A})}\), \({m\ge 0}\), \({1\le q \le \infty}\), denote the usual Lebesgue and Sobolev spaces, respectively (\({W^{0,q}(\mathcal{A})= L^q(\mathcal{A})}\)). Norms in \({L^q(\mathcal{A})}\) and \({W^{m,q}(\mathcal{A})}\) are denoted by \( \smash{ \|\,\cdot\,\|_{q,\mathcal{A}}}\), \( \smash{ \|\,\cdot\,\|_{m,q,\mathcal{A}}}\). The trace space on the boundary, \({\partial\mathcal{A}}\), of \({\mathcal{A}}\) for functions from \({W^{m,q}(\mathcal{A})}\) will be denoted by \({W^{m-1/q,q}(\partial\mathcal{A})}\) and its norm by \( \smash{ \|\,\cdot\|_{m-1/q,q,\partial\mathcal{A}}}\).

By \({D^{k,q}(\mathcal{A})}\), \({k\ge1}\), \({1 < q < \infty}\), we indicate the homogeneous Sobolev space of order \({(m,q)}\) on \({\mathcal{A}}\), that is, the class of functions u that are (Lebesgue) locally integrable in \({\mathcal{A}}\) and with \({D^\beta u\in L^q(\mathcal{A})}\), \({|\beta|=k}\), where \( D^{\beta} ={\partial ^{|\beta|}}/{\partial x_1 ^{\beta_1}\partial x_2^{\beta_2}\dots\partial x_N^{\beta_N}}\, \), \( |\beta|=\beta_1+\beta_2+\dots+\beta_N \). For \({u\in D^{k,q}(\mathcal{A})}\), we put

$$ |u|_{k,q,\mathcal{A}}= \left(\sum_{|\beta|=k} \int_\mathcal{A}\mid D^{\beta} u\mid^{q}\right)^{1/q}\:. $$

Notice that, whenever confusion does not arise, in the integrals we omit the infinitesimal volume or surface elements. Let

$$ \mathcal{D}(\mathcal{A})=\{\boldsymbol{\varphi}\in C^{\infty}_0(\mathcal{A}):\mathrm{div}\,\boldsymbol{\varphi} = 0\}\:. $$

By \({L^q_\sigma(\mathcal{A})}\) we denote the completion of \({\mathcal{D}(\mathcal{A})}\) in the norm \({\|\cdot\|_q}\). If \({\mathcal{A}}\) is any domain in \({\mathbb{R}^N}\) we have \({L^2(\mathcal{A})=L^2_\sigma(\mathcal{A})\oplus G(\mathcal{A})}\), where \( G(\mathcal{A})=\{\boldsymbol{h}\in L^2(\mathcal{A}): \boldsymbol{h}=\nabla p\,,\text{ for some } p\in D^{1,2}(\mathcal{A})\}\); (see Sect. III.1 in [31]). We denote by P the orthogonal projection operator from \({L^2(\mathcal{A})}\) onto \({L^2_\sigma(\mathcal{A})}\). By \({\mathcal{D}_0^{1,2}(\mathcal{A})}\) we mean the completion of \({\mathcal{D}(\mathcal{A})}\) in the norm \({|\,\cdot\,|_{1,2,\mathcal{A}}}\). \({\mathcal{D}_0^{1,2}(\mathcal{A})}\) is a Hilbert space with scalar product \({[\boldsymbol{v}_1,\boldsymbol{v}_2]:=\int_\mathcal{A}(\partial\boldsymbol{v}_1/\partial{x_i})\cdot(\partial\boldsymbol{v}_2/\partial{x_i})}\). Furthermore, \({\mathcal{D}_0^{-1,2}(\mathcal{A})}\) is the dual space of \({\mathcal{D}_0^{1,2}(\mathcal{A})}\) and \({\langle\cdot,\cdot\rangle_{\mathcal{A}}}\) is the associated duality pairing.

If \({\boldsymbol{g}\equiv\{g_i\}}\) and \({\boldsymbol{h}\equiv\{h_i\}}\) are vector fields on \({\mathcal{A}}\), we set

$$ (\boldsymbol{g},\boldsymbol{h})_\mathcal{A}=\int_\mathcal{A} g_i h_i\,, $$

whenever the integrals make sense.

In all the above notation, if confusion will not arise, we shall omit the subscript \({\mathcal{A}}\).

Given a Banach space X, and an open interval \({(a,b)}\), we denote by \({L^q(a,b;X)}\) the linear space of (equivalence classes of) functions \({f:(a,b)\to X}\) whose X‑norm is in \({L^q(a,b)}\). Likewise, for r a non‐negative integer and I a real interval, we denote by \({C^r(I;X)}\) the class of continuous functions from I to X, which are differentiable in I up to the order r included.

If X denotes any space of real functions, we shall use, as a rule, the same symbol X to denote the corresponding space of vector and tensor‐valued functions.

Bibliography

  1. Amick CJ (1984) Existence of Solutions to the Nonhomogeneous Steady Navier–Stokes Equations. Indiana Univ Math J 33:817–830

    Article  MathSciNet  MATH  Google Scholar 

  2. Amick CJ (1988) On Leray's Problem of Steady Navier–Stokes Flow Past a Body in the Plane. Acta Math 161:71–130

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball JM (1997) Continuity Properties and Global Attractors of Generalized Semiflows and the Navier–Stokes Equations. J Nonlinear Sci 7:475–502

    Article  MathSciNet  MATH  Google Scholar 

  4. Batchelor GK (1981) An Introduction to Fluid Mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  5. Beirão da Veiga H (1985) On the Construction of Suitable Weak Solutions to the Navier–Stokes Equations via a General Approximation Theorem. J Math Pures Appl 64:321–334

    Google Scholar 

  6. Beirão da Veiga H (1995) A New Regularity Class for the Navier–Stokes Equations in \({R\sp n}\). Chinese Ann Math Ser B 16:407–412

    Google Scholar 

  7. Berger MS (1977) Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Academic Press, New York

    MATH  Google Scholar 

  8. Berselli LC, Galdi GP (2002) Regularity Criteria Involving the Pressure for the Weak Solutions to the Navier–Stokes Equations. Proc Amer Math Soc 130:3585–3595

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown RM, Shen Z (1995) Estimates for the Stokes Operator in Lipschitz Domains. Indiana Univ Math J 44:1183–1206

    Article  MathSciNet  MATH  Google Scholar 

  10. Caccioppoli R (1936) Sulle Corrispondenze Funzionali Inverse Diramate: Teoria Generale ed Applicazioni al Problema di Plateau. Rend Accad Lincei 24:258–263; 416–421

    Google Scholar 

  11. Caffarelli L, Kohn R, Nirenberg L (1982) Partial Regularity of Suitable Weak Solutions of the Navier–Stokes Equations. Comm Pure Appl Math 35:771–831

    Article  MathSciNet  MATH  Google Scholar 

  12. Cattabriga L (1961) Su un Problema al Contorno Relativo al Sistema di Equazioni di Stokes. Rend Sem Mat Padova 31:308–340

    MathSciNet  MATH  Google Scholar 

  13. Cheskidov A, Foiaş C (2006) On Global Attractors of the 3D Navier–Stokes Equations. J Diff Eq 231:714–754

    Google Scholar 

  14. Constantin P (1990) Navier–Stokes Equations and Area of Interfaces. Comm Math Phys 129:241–266

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin P, Fefferman C (1993) Direction of Vorticity and the Problem of Global Regularity for the Navier–Stokes Equations. Indiana Univ Math J 42:775–789

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantin P, Foiaş C, Temam R (1985) Attractors Representing Turbulent Flows. Mem Amer Math Soc 53 no. 314 vii, pp 67

    Google Scholar 

  17. Darrigol O (2002) Between Hydrodynamics and Elasticity Theory: The First Five Births uof the Navier–Stokes Equation. Arch Hist Exact Sci 56:95–150

    Article  MathSciNet  MATH  Google Scholar 

  18. Escauriaza L, Seregin G, Sverák V (2003) Backward Uniqueness for Parabolic Equations. Arch Ration Mech Anal 169:147–157

    Google Scholar 

  19. Federer H (1969) Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol 153. Springer, New York

    Google Scholar 

  20. Finn R, Smith DR (1967) On the stationary solution of the Navier–Stokes equations in two dimensions. Arch Rational Mech Anal 25:26–39

    Article  MathSciNet  MATH  Google Scholar 

  21. Foiaş C, Olson EJ (1996) Finite Fractal Dimension and Hölder–Lipschitz Parametrization. Indiana Univ Math J 45:603–616

    Google Scholar 

  22. Foiaş C, Temam R (1977) Structure of the Set of Stationary Solutions of the Navier–Stokes Equations. Comm Pure Appl Math 30:149–164

    Google Scholar 

  23. Foiaş C, Temam R (1989) Gevrey Class Regularity for the Solutions of the Navier–Stokes Equations. J Func Anal 87:359–69

    Google Scholar 

  24. Foiaş C, Guillopé C, Temam R (1981) New A Priori Estimates for Navier–Stokes Equations in Dimension 3. Comm Partial Diff Equ 6:329–359

    Google Scholar 

  25. Foiaş C, Manley OP, Temam R (1988) Modelling of the Interaction of Small and Large Eddies in Two-Dimensional Turbulent Flows. RAIRO Modél Math Anal Numér 22:93–118

    Google Scholar 

  26. Foiaş C, Manley OP, Rosa R, Temam R (2001) Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and its Applications, 83. Cambridge University Press, Cambridge

    Google Scholar 

  27. Foiaş C, Sell GR, Temam R (1988) Inertial Manifolds for Nonlinear Evolutionary Equations. J Diff Eq 73:309–353

    Google Scholar 

  28. Fujita H (1961) On the Existence and Regularity of the Steady–State Solutions of the Navier–Stokes Equation. J Fac Sci Univ Tokyo 9:59–102

    MATH  Google Scholar 

  29. Fujita H (1998) On stationary solutions to Navier–Stokes equation in symmetric plane domains under general outflow condition. In Salvi R (ed) Navier–Stokes Equations: Theory and Numerical Methods. Pitman Res Notes Math Ser 388:16–30

    Google Scholar 

  30. Galdi GP (1993) Existence and Uniqueness at Low Reynolds Number of Stationary Plane Flow of a Viscous Fluid in Exterior Domains. In: Galdi GP, Necas J (eds) Recent Developments in Theoretical Fluid Mechanics. Pitman Res Notes Math Ser Longman Sci Tech, Harlow 291:1–33

    Google Scholar 

  31. Galdi GP (1998) An Introduction to the Mathematical Theory of the Navier–Stokes Equations. vol I. Linearized Steady Problems. Springer Tracts in Natural Philosophy, 38. Springer, New York (revised Edition)

    Google Scholar 

  32. Galdi GP (1998) An Introduction to the Mathematical Theory of the Navier–Stokes Equations. vol II. Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, 39. Springer, New York (revised Edition)

    Google Scholar 

  33. Galdi GP (1999) On the Existence of Symmetric Steady-State Solutions to the Plane Exterior Navier–Stokes Problem for Arbitrary Large Reynolds Number. In: Maremonti P (ed) Advances in fluid dynamics. Quad Mat Aracne Rome 4:1–25

    MathSciNet  Google Scholar 

  34. Galdi GP (2000) An Introduction to the Navier–Stokes Initial‐Boundary Value Problem. In: Galdi GP, Heywood JG, Rannacher R (eds) Fundamental Directions in Mathematical Fluid Mechanics. Adv Math Fluid Mech Birkhäuser, Basel 1:1–70

    Google Scholar 

  35. Galdi GP (2004) Stationary Navier–Stokes Problem in a Two-Dimensional Exterior Domain. In: Chipot M, Quittner P (eds) Stationary partial differential equations. Handb Diff Equ, North-Holland, Amsterdam 1:71–155

    Google Scholar 

  36. Galdi GP (2007) Further Properties of Steady‐State Solutions to the Navier–Stokes Problem Past a Threedimensional Obstacle. J Math Phys 48:1–43

    Article  MathSciNet  Google Scholar 

  37. Galdi GP (2007) Some Mathematical Properties of the Steady‐State Navier–Stokes Problem Past a Three‐Dimensional Obstacle. RWTH Aachen Institut für Mathematik, Report no. 17

    Google Scholar 

  38. Galdi GP, Maremonti P (1988) Regularity of Weak Solutions of the Navier–Stokes System in Arbitrary Domains. Ann Univ Ferrara Sez VII 34:59–73

    MathSciNet  MATH  Google Scholar 

  39. Galdi GP, Padula M (1990) A new approach to energy theory in the stability of fluid motion. Arch Rational Mech Anal 110:187–286

    Article  MathSciNet  MATH  Google Scholar 

  40. Galdi GP, Rabier PJ (1999) Functional Properties of the Navier–Stokes Operator and Bifurcation of Stationary Solutions: Planar Exterior Domains. In: Escher J, Simonett G (eds) Topics in Nonlinear Analysis. Progr Nonlinear Diff Equ Appl. Birkhäuser, Basel 35:273–303

    Google Scholar 

  41. Galdi GP, Heywood JG, Shibata Y (1997) On the Global Existence and Convergence to Steady State of Navier–Stokes Flow Past an Obstacle that is Started from Rest. Arch Rational Mech Anal 138:307–318

    Article  MathSciNet  MATH  Google Scholar 

  42. Galdi GP, Robertson AM, Rannacher R, Turek S (2007) Hemodynamical Flows: Modeling, Analysis and Simulation. Oberwolfach Seminar Series vol 35. Birkhäuser

    Google Scholar 

  43. Giga Y, Sohr H (1991) Abstract \({L\sp p}\) Estimates for the Cauchy Problem with Applications to the Navier–Stokes Equations in Exterior Domains. J Funct Anal 102:72–94

    Article  MathSciNet  MATH  Google Scholar 

  44. Gilbarg D, Weinberger HF (1974) Asymptotic Properties of Leray's Solution of the Stationary Two-Dimensional Navier–Stokes Equations. Russian Math Surveys 29:109–123

    Article  MathSciNet  Google Scholar 

  45. Gilbarg D, Weinberger HF (1978) Asymptotic Properties of Steady Plane Solutions of the Navier–Stokes Equations with Bounded Dirichlet. Integral Ann Scuola Norm Sup Pisa 5:381–404

    Google Scholar 

  46. Gohberg I, Goldberg S, Kaashoek MA (1990) Classes of Linear Operators:I. Operator Theory. Advances and Applications. vol49. Birkhäuser, Basel

    Book  Google Scholar 

  47. Guermond JL (2007) Faedo–Galerkin Weak Solutions of the Navier–Stokes Equations with Dirichlet Boundary Conditions are Suitable. J Math Pures Appl 88:87–106

    MathSciNet  MATH  Google Scholar 

  48. Gustafson S, Kang K, Tsai TP (2006) Regularity Criteria for Suitable Weak Solutions of the Navier–Stokes Equations Near the Boundary. J Diff Equ 226:594–618

    Article  MathSciNet  MATH  Google Scholar 

  49. Gustafson S, Kang K, Tsai TP (2007) Interior Regularity Criteria for Suitable Weak Solutions of the Navier–Stokes Equations. Comm Math Phys 273:161–176

    Article  MathSciNet  MATH  Google Scholar 

  50. Heywood JG (1980) The Navier–Stokes Equations: on the Existence, Regularity and Decay of Solutions. Indiana Univ Math J 29:639–681

    Article  MathSciNet  MATH  Google Scholar 

  51. Heywood JG, Rannacher R (1993) On the Question of Turbulence Modeling by Approximate Inertial Manifolds and the Nonlinear Galerkin Method. SIAM J Numer Anal 30:1603–1621

    Google Scholar 

  52. Hopf E (1941) Ein Allgemeiner Endlichkeitsatz der Hydrodynamik. Math Annalen 117:764–775

    Article  MathSciNet  Google Scholar 

  53. Hopf E (1948) A Mathematical Example Displaying Features of Turbulence. Comm Pure Appl Math 1:303–322

    Article  MathSciNet  MATH  Google Scholar 

  54. Hopf E (1951) Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math Nachr 4:213–231

    Article  MathSciNet  MATH  Google Scholar 

  55. Kozono H, Sohr H (2000) Remark on Uniqueness of Weak Solutions to the Navier–Stokes Equations. Analysis 16:255–271

    MathSciNet  Google Scholar 

  56. Kozono H, Taniuchi Y (2000) Bilinear Estimates in BMO and the Navier–Stokes Equations. Math Z 235:173–94

    Article  MathSciNet  MATH  Google Scholar 

  57. Kozono H, Yatsu N (2004) Extension Criterion via Two-Components of Vorticity on Strong Solutions to the 3D Navier–Stokes Equations. Math Z 246:55–68

    Article  MathSciNet  MATH  Google Scholar 

  58. Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressible flow. Revised English edition. Gordon and Breach Science, New York-London

    Google Scholar 

  59. Ladyzhenskaya OA (1991) Attractors for Semigroups and Evolution Equations. Lezioni Lincee. Cambridge University Press, Cambridge

    Book  Google Scholar 

  60. Ladyzhenskaya OA, Seregin GA (1999) On Partial Regularity of Suitable Weak Solutions to the Three‐Dimensional Navier–Stokes Equations. J Math Fluid Mech 1:356–387

    Article  MathSciNet  MATH  Google Scholar 

  61. Leray J (1933) Etude de Diverses Òquations Intégrales non Linéaires et de Quelques Problèmes que Pose l' Hydrodynamique. J Math Pures Appl 12:1–82

    MathSciNet  MATH  Google Scholar 

  62. Leray J (1934) Sur le Mouvement d'un Liquide Visqueux Emplissant l'Espace. Acta Math 63:193–248

    Article  MathSciNet  MATH  Google Scholar 

  63. Leray J (1936) Les Problémes non Linéaires. Enseignement Math 35:139–151

    Google Scholar 

  64. Lin F (1998) A New Proof of the Caffarelli–Kohn-Nirenberg Theorem. Comm. Pure Appl Math 51:241–257

    Article  MATH  Google Scholar 

  65. Marchioro C (1986) An Example of Absence of Turbulence for any Reynolds Number. Comm Math Phys 105:99–106

    Article  MathSciNet  MATH  Google Scholar 

  66. Maremonti P (1998) Some Interpolation Inequalities Involving Stokes Operator and First Order Derivatives. Ann Mat Pura Appl 175:59–91

    Article  MathSciNet  MATH  Google Scholar 

  67. Málek J, Padula M, Ruzicka M (1995) A Note on Derivative Estimates for a Hopf Solution to the Navier–Stokes System in a Three‐Dimensional Cube. In: Sequeira A (ed) Navier–Stokes Equations and Related Nonlinear Problems. Plenum, New York 141–146

    Google Scholar 

  68. Natarajan R, Acrivos A (1993) The Instability of the Steady Flow Past Spheres and Disks. J Fluid Mech 254:323–342

    Article  MATH  Google Scholar 

  69. Neustupa J, Novotný A, Penel P (2002) An Interior Regularity of a Weak Solution to the Navier–Stokes Equations in Dependence on one Component of Velocity. In: Galdi GP, Rannacher R (eds) Topics in mathematical fluid mechanics. Quad Mat Aracne, Rome 10:163–183

    Google Scholar 

  70. Nirenberg L (1959) On Elliptic Partial Differential Equations. Ann Scuola Norm Sup Pisa 13:115–162

    MathSciNet  MATH  Google Scholar 

  71. Prodi G (1959) Un Teorema di Unicità per le Equazioni di Navier–Stokes. Ann Mat Pura Appl 48:173–182

    Article  MathSciNet  MATH  Google Scholar 

  72. Prodi G (1962) Teoremi di Tipo Locale per il Sistema di Navier–Stokes e Stabilità delle Soluzioni Stazionarie. Rend Sem Mat Univ Padova 32:374–397

    MathSciNet  MATH  Google Scholar 

  73. Rosa R (1998) The Global Attractor for the 2D Navier–Stokes Flow on Some Unbounded Domains. Nonlinear Anal 32:71–85

    Google Scholar 

  74. Ruelle D, Takens F (1971) On the Nature of Turbulence. Comm Math Phys 20:167–192

    Article  MathSciNet  MATH  Google Scholar 

  75. Sather J (1963) The Initial Boundary Value Problem for the Navier–Stokes Equations in Regions with Moving Boundaries. Ph.D. thesis, University of Minnesota

    Google Scholar 

  76. Scheffer V (1976) Partial Regularity of Solutions to the Navier–Stokes Equations. Pacific J Math 66:535–552

    Article  MathSciNet  MATH  Google Scholar 

  77. Scheffer V (1977) Hausdorff Measure and the Navier–Stokes Equations. Comm Math Phys 55:97–112

    Article  MathSciNet  MATH  Google Scholar 

  78. Scheffer V (1980) The Navier–Stokes Equations on a Bounded Domain. Comm Math Phys 73:1–42

    Article  MathSciNet  MATH  Google Scholar 

  79. Sell GR (1996) Global Attractors for the Three‐Dimensional Navier-Stokes Equations. J Dynam Diff Eq 8:1–33

    Article  MathSciNet  MATH  Google Scholar 

  80. Seregin G, Sverák V (2002) The Navier–Stokes Equations and Backward Uniqueness. In: Birman MS, Hildebrandt S, Solonnikov VA, Uraltseva NN (eds) Nonlinear problems in mathematical physics and related topics, II. Int Math Ser (N. Y.) Kluwer/Plenum, New York 2:353–366

    Google Scholar 

  81. Seregin GA, Shilkin TN, Solonnikov VA (2006) Boundary Partial Regularity for the Navier–Stokes Equations. J Math Sci 132:339–358

    Article  MathSciNet  Google Scholar 

  82. Serrin JB (1962) On the Interior Regularity of Weak Solutions of the Navier–Stokes Equations. Arch Rational Mech Anal 9:187–195

    Article  MathSciNet  MATH  Google Scholar 

  83. Serrin JB (1963) The Initial Value Problem for the Navier–Stokes Equations. In: Langer RE (ed) Nonlinear Problems. University of Wisconsin Press, pp. 69–98

    Google Scholar 

  84. Smale S (1965) An Infinite Dimensional Version of Sard's Theorem. Amer J Math 87:861–866

    Article  MathSciNet  MATH  Google Scholar 

  85. Smale S (1967) Differentiable Dynamical Systems. Bull Amer Math Soc 73:747–817

    Article  MathSciNet  MATH  Google Scholar 

  86. Sohr H (2001) The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel

    MATH  Google Scholar 

  87. Sohr H, von Wahl W (1984) On the Singular Set and the Uniqueness of Weak Solutions of the Navier–Stokes Equations. Manuscripta Math 49:27–59

    Article  MathSciNet  MATH  Google Scholar 

  88. Stein EM (1970) Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton

    MATH  Google Scholar 

  89. Stokes GG (1851) On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans Cambridge Phil Soc 9:8–106

    Google Scholar 

  90. Takeshita A (1993) A Remark on Leray's Inequality. Pacific J Math 157:151–158

    Article  MathSciNet  MATH  Google Scholar 

  91. Taneda S (1956) Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers. J Phys Soc Japan 11:1104–1111

    Article  Google Scholar 

  92. Temam R (1986) Infinite‐Dimensional Dynamical Systems in Fluid Mechanics. In: Browder F (ed) Nonlinear Functional Analysis and its Applications, Part 2. Proc. Sympos. Pure Math Amer. Math Soc. Providence, RI 45:431–445

    Google Scholar 

  93. Temam R (1995) Navier–Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, 66

    Google Scholar 

  94. Temam R (1997) Infinite‐Dimensional Dynamical Systems in Mechanics and Physics. Second edition. Applied Mathematical Sciences, 68. Springer, New York

    Google Scholar 

  95. Tomboulides AG, Orszag SA (2000) Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere. J Fluid Mech 416:45–73

    Article  MathSciNet  MATH  Google Scholar 

  96. Vorovich II, Youdovic VI (1961) Stationary Flow of a Viscous Incompressible Fluid. Mat Sb 53:393–428 (in Russian)

    MathSciNet  Google Scholar 

  97. Wu JS, Faeth GM (1993) Sphere Wakes in Still Surroundings at Intermediate Reynolds Numbers. AIAA J 31:1448–1460

    Article  Google Scholar 

  98. Xie W (1997) Sharp Sobolev Interpolation Inequalities for the Stokes Operator. Diff Inte Equ 10:393–399

    MATH  Google Scholar 

  99. Zeidler E (1988) Nonlinear Functional Analysis and Applications: Application to Mathematical Physics. Springer, New York

    Google Scholar 

  100. Zeidler E (1995) Applied Functional Analysis: Main Principles and their Applications. Applied Math Sci., Springer, vol 109

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Science Foundation, Grants DMS-0404834 and DMS-0707281.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Galdi, G.P. (2012). Navier–Stokes Equations : A Mathematical Analysis. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_60

Download citation

Publish with us

Policies and ethics