Skip to main content
  • 1199 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Picking an Invariant Probability Measure

Tractable Chaotic Dynamics

Statistical Properties

Orbit Complexity

Stability

Untreated Topics

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Entropy, measure‐theoretic (or: metric entropy):

For an ergodic invariant probability measure μ, it is the smallest exponential growth rates of the number of orbit segments of given length, with respect to that length, after restriction to a set of positive measure. We denote it by \({h(T,\mu)}\). See Entropy in Ergodic Theory and Subsect. “Local Complexity” below.

Entropy, topological:

It is the exponential growth rates of the number of orbit segments of given length, with respect to that length. We denote it by \({h_{\operatorname{top}}(f)}\). See Entropy in Ergodic Theory and Subsect. “Local Complexity” below.

Ergodicity:

A  measure is ergodic with respect to a map T if given any measurable subset S which is invariant, i. e., such that \({T^{-1}S=S}\), either S or its complement has zero measure.

Hyperbolicity:

A  measure is hyperbolic in the sense of Pesin if at almost every point no Lyapunov exponent is zero. See Smooth Ergodic Theory.

Kolmogorov typicality:

A  property is typical in the sense of Kolmogorov for a topological space \( \mathcal F \) of parametrized families \( f=(f_t)_{t\in U}\), U being an open subset of \({\mathbb{R}}^d \) for some \( d\geq1 \), if it holds for f t for Lebesgue almost every t and topologically generic \({f \in \mathcal{F}}\).

Lyapunov exponents:

The Lyapunov exponents (Smooth Ergodic Theory) are the limits, when they exist, \( \lim_{n\to\infty} \frac1n \log\|(T^n)^{\prime}(x).v\| \) where \({x\in M}\) and v is a non zero tangent vector to M at x. The Lyapunov exponents of an ergodic measure is the set of Lyapunov exponents obtained at almost every point with respect to that measure for all non-zero tangent vectors.

Markov shift (topological, countable state):

It is the set of all infinite or bi‐infinite paths on some countable directed graph endowed with the left-shift, which just translates these sequences.

Maximum entropy measure:

It is a measure μ which maximizes the measured entropy and, by the variational principle, realized the topological entropy.

Physical measure:

It is a measure μ whose basin, \( \{x\in M\colon \forall \phi\colon M\to{\mathbb{R}}\text{ continuous }\lim_{n\to\infty} \frac1n\sum_{k=0}^{n-1}\phi(f^kx)=\int \phi\, \mskip2mu\mathrm{d}\mu\}\) has nonzero volume.

Prevalence:

A  property is prevalent in some complete metric, separable vector space X if it holds outside of a set N such that, for some Borel probability measure μ on X: \({\mu(A+v)=0}\) for all \({v\in X}\). See [76,141,239].

Sensitivity on initial conditions:

T has sensitivity to initial conditions on \({X^{\prime}\subset X}\) if there exists a constant \({\rho > 0}\) such that for every \({x\in X^{\prime}}\), there exists \({y\in X}\), arbitrarily close to x, and \({n\geq0}\) such that \( d(T^ny, T^nx) > \rho \).

Sinai–Ruelle–Bowen measures:

It is an invariant probability measure which is absolutely continuous along the unstable foliation (defined using the unstable manifolds of almost every \({x\in M}\), which are the sets \({W^u(x)}\), of points y such that \( \lim_{n\to\infty} \frac1n \log d(T^{-n}y,T^{-n}x)<0 \)).

Statistical stability:

T is statistically stable if the physical measures of nearby deterministic systems are arbitrarily close to the convex hull of the physical measures of T.

Stochastic stability:

T is stochastically stable if the invariant measures of the Markov chains obtained from T by adding a suitable, smooth noise with size \({\epsilon\to0}\) are arbitrarily close to the convex hull of the physical measures of T.

Structural stability:

T is structurally stable if any S close enough to T is topologically the same as T: there exists a homeomorphism \({h \colon M \to M}\) such that \({h\circ T=S\circ h}\) (orbits are sent to orbits).

Subshift of finite type:

It is a closed subset \({\Sigma_F}\) of \( \Sigma = \mathcal A^{\mathbb{Z}}\) or \({\Sigma=\mathcal A^{\mathbb{N}}}\) where \({\mathcal A}\) is a finite set satisfying: \( \Sigma_F = \{x\in\Sigma \colon \forall k < \ell \colon x_kx_{k+1}\dots x_\ell\notin F\}\) for some finite set F.

Topological genericity:

Let  X be a Baire space, e. g., a complete metric space. A property is (topologically) generic in a space X (or holds for the (topologically) generic element of X) if it holds on a nonmeager set (or set of second Baire category), i. e., on a dense \({G_\delta}\) subset.

Bibliography

Primary Literature

  1. Aaronson J, Denker M (2001) Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch Dyn 1:193–237

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdenur F, Bonatti C, Crovisier S (2006) Global dominated splittings and the \({C\sp 1}\) Newhouse phenomenon. Proc Amer Math Soc 134(8):2229–2237

    Article  MathSciNet  MATH  Google Scholar 

  3. Abraham R, Smale S (1970) Nongenericity of Ω‑stability. In: Global Analysis, vol XIV. Proc Sympos Pure Math. Amer Math Soc

    Google Scholar 

  4. Alves JF (2000) SRB measures for non‐hyperbolic systems with multidimensional expansion. Ann Sci Ecole Norm Sup 33(4):1–32

    MathSciNet  MATH  Google Scholar 

  5. Alves JF (2006) A survey of recent results on some statistical features of non‐uniformly expanding maps. Discret Contin Dyn Syst 15:1–20

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves JF, Araujo V (2003) Random perturbations of nonuniformly expanding maps. Geometric methods in dynamics. I Astérisque 286:25–62

    Google Scholar 

  7. Alves JF, Viana M (2002) Statistical stability for robust classes of maps with non‐uniform expansion. Ergod Theory Dynam Syst 22:1–32

    Article  MathSciNet  MATH  Google Scholar 

  8. Alves JF, Bonatti C, Viana M (2000) SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent Math 140:351–398

    Article  MathSciNet  MATH  Google Scholar 

  9. Anantharaman N (2004) On the zero‐temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics. J Eur Math Soc (JEMS) 6:207–276

    Article  MathSciNet  MATH  Google Scholar 

  10. Anantharaman N, Nonnenmacher S (2007) Half delocalization of the eigenfunctions for the Laplacian on an Anosov manifold. Ann Inst Fourier 57:2465–2523

    Article  MathSciNet  MATH  Google Scholar 

  11. Araujo V (2001) Infinitely many stochastically stable attractors. Nonlinearity 14:583–596

    Article  MathSciNet  MATH  Google Scholar 

  12. Araujo V, Pacifico MJ (2006) Large deviations for non‐uniformly expanding maps. J Stat Phys 125:415–457

    Article  MathSciNet  Google Scholar 

  13. Araujo V, Tahzibi A (2005) Stochastic stability at the boundary of expanding maps. Nonlinearity 18:939–958

    Article  MathSciNet  MATH  Google Scholar 

  14. Arnaud MC (1998) Le “closing lemma” en topologie \({C\sp 1}\). Mem Soc Math Fr (NS) 74

    Google Scholar 

  15. Arnol’d VI (1988) Geometrical methods in the theory of ordinary differential equations, 2nd edn. Grundlehren der Mathematischen Wissenschaften, 250. Springer, New York

    Google Scholar 

  16. Arnol’d VI, Avez A (1968) Ergodic problems of classical mechanics. W.A. Benjamin, New York

    Google Scholar 

  17. Arnold L (1998) Random dynamical systems. Springer Monographs in Mathematics. Springer, Berlin

    Google Scholar 

  18. Avila A (2007) personal communication

    Google Scholar 

  19. Avila A, Moreira CG (2005) Statistical properties of unimodal maps: the quadratic family. Ann of Math 161(2):831–881

    Article  MathSciNet  MATH  Google Scholar 

  20. Avila A, Lyubich M, de Melo W (2003) Regular or stochastic dynamics in real analytic families of unimodal maps. Invent Math 154:451–550

    Article  MathSciNet  MATH  Google Scholar 

  21. Baladi V (2000) Positive transfer operators and decay of correlations. In: Advanced Series in Nonlinear Dynamics, 16. World Scientific Publishing Co, Inc, River Edge, NJ

    Google Scholar 

  22. Baladi V, Gouëzel S (2008) Good Banach spaces for piecewise hyperbolic maps via interpolation. preprint arXiv:0711.1960 available from http://www.arxiv.org

  23. Baladi V, Ruelle D (1996) Sharp determinants. Invent Math 123:553–574

    MathSciNet  MATH  Google Scholar 

  24. Baladi V, Tsujii M (2007) Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann Inst Fourier (Grenoble) 57:127–154

    Article  MathSciNet  MATH  Google Scholar 

  25. Baladi V, Young LS (1993) On the spectra of randomly perturbed expanding maps. Comm Math Phys 156:355–385. Erratum: Comm Math Phys 166(1):219–220, 1994

    Article  MathSciNet  MATH  Google Scholar 

  26. Baladi V, Kondah A, Schmitt B (1996) Random correlations for small perturbations of expanding maps, English summary. Random Comput Dynam 4:179–204

    MathSciNet  MATH  Google Scholar 

  27. Baraviera AT, Bonatti C (2003) Removing zero Lyapunov exponents, English summary. Ergod Theory Dynam Syst 23:1655–1670

    Article  MathSciNet  MATH  Google Scholar 

  28. Barreira L, Schmeling J (2000) Sets of “non‐typical” points have full topological entropy and full Hausdorff dimension. Isr J Math 116:29–70

    Article  MathSciNet  MATH  Google Scholar 

  29. Barreira L, Pesin Ya, Schmeling J (1999) Dimension and product structure of hyperbolic measures. Ann of Math 149(2):755–783

    Article  MathSciNet  MATH  Google Scholar 

  30. Benedicks M, Carleson L (1985) On iterations of \({1-ax\sp 2}\) on \({(-1,1)}\). Ann of Math (2) 122(1):1–25

    Article  MathSciNet  Google Scholar 

  31. Benedicks M, Carleson L (1991) The dynamics of the Hénon map. Ann of Math 133(2):73–169

    Article  MathSciNet  MATH  Google Scholar 

  32. Benedicks M, Viana M (2001) Solution of the basin problem for Hénon-like attractors. Invent Math 143:375–434

    Article  MathSciNet  MATH  Google Scholar 

  33. Benedicks M, Viana M (2006) Random perturbations and statistical properties of Hénon-like maps. Ann Inst H Poincaré Anal Non Linéaire 23:713–752

    Google Scholar 

  34. Benedicks M, Young LS (1993) Sinaĭ–Bowen–Ruelle measures for certain Hénon maps. Invent Math 112:541–576

    Article  MathSciNet  MATH  Google Scholar 

  35. Benedicks M, Young LS (2000) Markov extensions and decay of correlations for certain Hénon maps. Géométrie complexe et systèmes dynamiques, Orsay, 1995. Astérisque 261:13–56

    MathSciNet  Google Scholar 

  36. Bergelson V (2006) Ergodic Ramsey theory: a dynamical approach to static theorems. In: International Congress of Mathematicians, vol II, Eur Math Soc, Zürich, pp 1655–1678

    Google Scholar 

  37. Berkes I, Csáki E (2001) A universal result in almost sure central limit theory. Stoch Process Appl 94(1):105–134

    Google Scholar 

  38. Bishop E (1967/1968) A constructive ergodic theorem. J Math Mech 17:631–639

    Google Scholar 

  39. Blanchard F, Glasner E, Kolyada S, Maass A (2002) On Li-Yorke pairs, English summary. J Reine Angew Math 547:51–68

    MathSciNet  MATH  Google Scholar 

  40. Blank M (1989) Small perturbations of chaotic dynamical systems. (Russian) Uspekhi Mat Nauk 44:3–28, 203. Translation in: Russ Math Surv 44:1–33

    Article  MathSciNet  MATH  Google Scholar 

  41. Blank M (1997) Discreteness and continuity in problems of chaotic dynamics. In: Translations of Mathematical Monographs, 161. American Mathematical Society, Providence

    Google Scholar 

  42. Blank M, Keller G (1997) Stochastic stability versus localization in one‐dimensional chaotic dynamical systems. Nonlinearity 10:81–107

    Article  MathSciNet  MATH  Google Scholar 

  43. Blank M, Keller G, Liverani C (2002) Ruelle–Perron–Frobenius spectrum for Anosov maps. Nonlinearity 15:1905–1973

    Article  MathSciNet  MATH  Google Scholar 

  44. Bochi J (2002) Genericity of zero Lyapunov exponents. Ergod Theory Dynam Syst 22:1667–1696

    Article  MathSciNet  MATH  Google Scholar 

  45. Bochi J, Viana M (2005) The Lyapunov exponents of generic volume‐preserving and symplectic maps. Ann of Math 161(2):1423–1485

    Article  MathSciNet  MATH  Google Scholar 

  46. Bolsinov AV, Taimanov IA (2000) Integrable geodesic flows with positive topological entropy. Invent Math 140:639–650

    Article  MathSciNet  MATH  Google Scholar 

  47. Bonano C, Collet P (2006) Complexity for extended dynamical systems. arXiv:math/0609681

    Google Scholar 

  48. Bonatti C, Crovisier S (2004) Recurrence et genericite. Invent Math 158(1):33–104

    Article  MathSciNet  MATH  Google Scholar 

  49. Bonatti C, Viana M (2000) SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Isr J Math 115:157–193

    Article  MathSciNet  MATH  Google Scholar 

  50. Bonatti C, Viana M (2004) Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod Theory Dynam Syst 24(5):1295–1330

    Article  MathSciNet  MATH  Google Scholar 

  51. Bonatti C, Diaz L, Viana M (2005) Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. In: Mathematical Physics, III. Encyclopedia of Mathematical Sciences, 102. Springer, Berlin

    Google Scholar 

  52. Bowen R (1975) Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture Notes in Mathematics, vol 470. Springer, Berlin–New York

    Google Scholar 

  53. Bowen R (1979) Hausdorff dimension of quasi‐circles. Inst Hautes Études Sci Publ Math 50:11–25

    Article  MathSciNet  MATH  Google Scholar 

  54. Bowen R, Ruelle D (1975) Ergodic theory of Axiom A flows. Invent Math 29:181–202

    Article  MathSciNet  MATH  Google Scholar 

  55. Boyle M, Downarowicz T (2004) The entropy theory of symbolic extensions. Invent Math 156:119–161

    Article  MathSciNet  MATH  Google Scholar 

  56. Boyle M, Fiebig D, Fiebig U (2002) Residual entropy, conditional entropy and subshift covers. Forum Math 14:713–757

    Article  MathSciNet  MATH  Google Scholar 

  57. Boyle M, Buzzi J, Gomez R (2006) Ricardo Almost isomorphism for countable state Markov shifts. J Reine Angew Math 592:23–47

    Article  MathSciNet  MATH  Google Scholar 

  58. Brain M, Berger A (2001) Chaos and chance. In: An introduction to stochastic aspects of dynamics. Walter de Gruyter, Berlin

    Google Scholar 

  59. Brin M (2001) Appendix A. In: Barreira L, Pesin Y (eds) Lectures on Lyapunov exponents and smooth ergodic theory. Proc Sympos Pure Math, 69, Smooth ergodic theory and its applications, Seattle, WA, 1999, pp 3–106. Amer Math Soc, Providence, RI

    Google Scholar 

  60. Brin M, Stuck G (2002) Introduction to dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  61. Broise A (1996) Transformations dilatantes de l’intervalle et theoremes limites. Etudes spectrales d’operateurs de transfert et applications. Asterisque 238:1–109

    MathSciNet  Google Scholar 

  62. Broise A (1996) Transformations dilatantes de l’intervalle et théorèmes limites. Astérisque 238:1–109

    MathSciNet  Google Scholar 

  63. Bruin H, Keller G, Nowicki T, van Strien S (1996) Wild Cantor attractors exist. Ann of Math 143(2):97–130

    Article  MathSciNet  MATH  Google Scholar 

  64. Buzzi J (1997) Intrinsic ergodicity of smooth interval maps. Isr J Math 100:125–161

    Article  MathSciNet  MATH  Google Scholar 

  65. Buzzi J (2000) Absolutely continuous invariant probability measures for arbitrary expanding piecewise \({\boldsymbol{R}}\)-analytic mappings of the plane. Ergod Theory Dynam Syst 20:697–708

    Article  MathSciNet  MATH  Google Scholar 

  66. Buzzi J (2000) On entropy‐expanding maps. Unpublished

    Google Scholar 

  67. Buzzi J (2001) No or infinitely many a.c.i.p. for piecewise expanding \({C\sp r}\) maps in higher dimensions. Comm Math Phys 222:495–501

    Article  MathSciNet  MATH  Google Scholar 

  68. Buzzi J (2005) Subshifts of quasi‐finite type. Invent Math 159:369–406

    Article  MathSciNet  MATH  Google Scholar 

  69. Buzzi J (2006) Puzzles of Quasi‐Finite Type, Zeta Functions and Symbolic Dynamics for Multi‐Dimensional Maps. arXiv:math/0610911

    Google Scholar 

  70. Buzzi J () Hyperbolicity through Entropies. Saint-Flour Summer probability school lecture notes (to appear)

    Google Scholar 

  71. Bálint P, Gouëzel S (2006) Limit theorems in the stadium billiard. Comm Math Phys 263:461–512

    Google Scholar 

  72. Carleson L, Gamelin TW (1993) Complex dynamics. In: Universitext: Tracts in Mathematics. Springer, New York

    Google Scholar 

  73. Chazottes JR, Gouëzel S (2007) On almost‐sure versions of classical limit theorems for dynamical systems. Probab Theory Relat Fields 138:195–234

    Google Scholar 

  74. Chernov N (1999) Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discret Contin Dynam Syst 5(2):425–448

    Article  MathSciNet  MATH  Google Scholar 

  75. Chernov N, Markarian R, Troubetzkoy S (2000) Invariant measures for Anosov maps with small holes. Ergod Theory Dynam Syst 20:1007–1044

    Article  MathSciNet  MATH  Google Scholar 

  76. Christensen JRR (1972) On sets of Haar measure zero in abelian Polish groups. Isr J Math 13:255–260

    Article  Google Scholar 

  77. Collet P (1996) Some ergodic properties of maps of the interval. In: Dynamical systems, Temuco, 1991/1992. Travaux en Cours, 52. Hermann, Paris, pp 55–91

    Google Scholar 

  78. Collet P, Eckmann JP (2006) Concepts and results in chaotic dynamics: a short course. Theoretical and Mathematical Physics. Springer, Berlin

    Google Scholar 

  79. Collet P, Galves A (1995) Asymptotic distribution of entrance times for expanding maps of the interval. Dynamical systems and applications, pp 139–152. World Sci Ser Appl Anal 4, World Sci Publ, River Edge, NJ

    Google Scholar 

  80. Collet P, Courbage M, Mertens S, Neishtadt A, Zaslavsky G (eds) (2005) Chaotic dynamics and transport in classical and quantum systems. Proceedings of the International Summer School of the NATO Advanced Study Institute held in Cargese, August 18–30, 2003. Edited by NATO Science Series II: Mathematics, Physics and Chemistry, 182. Kluwer, Dordrecht

    MATH  Google Scholar 

  81. Contreras G, Lopes AO, Thieullen Ph (2001) Lyapunov minimizing measures for expanding maps of the circle, English summary. Ergod Theory Dynam Syst 21:1379–1409

    Article  MathSciNet  MATH  Google Scholar 

  82. Cowieson WJ (2002) Absolutely continuous invariant measures for most piecewise smooth expanding maps. Ergod Theory Dynam Syst 22:1061–1078

    Article  MathSciNet  MATH  Google Scholar 

  83. Cowieson WJ, Young LS (2005) SRB measures as zero-noise limits. Ergod Theory Dynam Syst 25:1115–1138

    Article  MathSciNet  MATH  Google Scholar 

  84. Crovisier S (2006) Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems. http://www.arxiv.org/abs/math/0605387

  85. Crovisier S (2006) Periodic orbits and chain‐transitive sets of \({C\sp 1}\)-diffeomorphisms. Publ Math Inst Hautes Etudes Sci 104:87–141

    Article  MathSciNet  MATH  Google Scholar 

  86. Crovisier S (2006) Perturbation of \({C\sp 1}\)-diffeomorphisms and generic conservative dynamics on surfaces. Dynamique des diffeomorphismes conservatifs des surfaces: un point de vue topologique, 21, Panor Syntheses. Soc Math France, Paris, pp 1–33

    Google Scholar 

  87. Cvitanović P, Gunaratne GH, Procaccia I (1988) Topological and metric properties of Henon-type strange attractors. Phys Rev A 38(3):1503–1520

    Google Scholar 

  88. de Carvalho A, Hall T (2002) How to prune a horseshoe. Nonlinearity 15:R19-R68

    Article  MATH  Google Scholar 

  89. de Castro A (2002) Backward inducing and exponential decay of correlations for partially hyperbolic attractors. Isr J Math 130:29–75

    Article  MATH  Google Scholar 

  90. de la Llave R (2001) A tutorial on KAM theory. In: Smooth ergodic theory and its applications, Seattle, WA, 1999, pp 175–292. Proc Sympos Pure Math, 69. Amer Math Soc, Providence

    Google Scholar 

  91. de Melo W, van Strien S (1993) One‐dimensional dynamics. In: Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 25. Springer, Berlin

    Google Scholar 

  92. Denker M, Philipp W (1984) Approximation by Brownian motion for Gibbs measures and flows under a function. Ergod Theory Dyn Syst 4:541–552

    Article  MathSciNet  MATH  Google Scholar 

  93. Detmers MF, Liverani C (2007) Stability of Statistical Properties in Two‐dimensional Piecewise Hyperbolic Maps. Trans Amer Math Soc 360:4777–4814

    Article  Google Scholar 

  94. Devaney RL (1989) An introduction to chaotic dynamical systems, 2nd ed. Addison–Wesley, Redwood

    Google Scholar 

  95. Diaz L, Rocha J, Viana M (1996) Strange attractors in saddle‐node cycles: prevalence and globality. Invent Math 125:37–74

    Article  MathSciNet  MATH  Google Scholar 

  96. Dolgopyat D (2000) On dynamics of mostly contracting diffeomorphisms. Comm Math Phys 213:181–201

    Article  MathSciNet  MATH  Google Scholar 

  97. Dolgopyat D (2002) On mixing properties of compact group extensions of hyperbolic systems. Isr J Math 130:157–205

    Article  MathSciNet  MATH  Google Scholar 

  98. Dolgopyat D (2004) Limit theorems for partially hyperbolic systems. Trans Amer Math Soc 356:1637–1689

    Article  MathSciNet  MATH  Google Scholar 

  99. Dolgopyat D (2004) On differentiability of SRB states for partially hyperbolic systems. Invent Math 155:389–449

    Article  MathSciNet  MATH  Google Scholar 

  100. Downarowicz T (2005) Entropy structure. J Anal Math 96:57–116

    Article  MathSciNet  MATH  Google Scholar 

  101. Downarowicz T, Newhouse S (2005) Symbolic extensions and smooth dynamical systems. Invent Math 160:453–499

    Article  MathSciNet  MATH  Google Scholar 

  102. Downarowicz T, Serafin J (2003) Possible entropy functions. Isr J Math 135:221–250

    Article  MathSciNet  MATH  Google Scholar 

  103. Duhem P (1906) La théorie physique, son objet et sa structure. Vrin, Paris 1981

    Google Scholar 

  104. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656

    Article  MathSciNet  Google Scholar 

  105. Eskin A, McMullen C (1993) Mixing, counting, and equidistribution in Lie groups. Duke Math J 71:181–209

    Article  MathSciNet  MATH  Google Scholar 

  106. Fiedler B (ed) (2001) Ergodic theory, analysis, and efficient simulation of dynamical systems. Springer, Berlin

    MATH  Google Scholar 

  107. Fiedler B (ed) (2002) Handbook of dynamical systems, vol 2. North‐Holland, Amsterdam

    MATH  Google Scholar 

  108. Fisher A, Lopes AO (2001) Exact bounds for the polynomial decay of correlation, \({1/f}\) noise and the CLT for the equilibrium state of a non‐Hölder potential. Nonlinearity 14:1071–1104

    Article  MathSciNet  MATH  Google Scholar 

  109. Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. In: MB Porter Lectures. Princeton University Press, Princeton, NJ

    Google Scholar 

  110. Gallavotti G (1999) Statistical mechanics. In: A short treatise. Texts and Monographs in Physics. Springer, Berlin

    Google Scholar 

  111. Gatzouras D, Peres Y (1997) Invariant measures of full dimension for some expanding maps. Ergod Theory Dynam Syst 17:147–167

    Article  MathSciNet  MATH  Google Scholar 

  112. Glasner E, Weiss B (1993) Sensitive dependence on initial conditions. Nonlinearity 6:1067–1075

    Article  MathSciNet  MATH  Google Scholar 

  113. Gordin MI (1969) The central limit theorem for stationary processes. (Russian) Dokl Akad Nauk SSSR 188:739–741

    MathSciNet  Google Scholar 

  114. Gouëzel S (2004) Central limit theorem and stable laws for intermittent maps. Probab Theory Relat Fields 128:82–122

    Google Scholar 

  115. Gouëzel S (2005) Berry–Esseen theorem and local limit theorem for non uniformly expanding maps. Ann Inst H Poincaré 41:997–1024

    Google Scholar 

  116. Gouëzel S, Liverani C (2006) Banach spaces adapted to Anosov systems. Ergod Theory Dyn Syst 26:189–217

    Google Scholar 

  117. Graczyk J, Świątek G (1997) Generic hyperbolicity in the logistic family. Ann of Math 146(2):1–52

    Google Scholar 

  118. Gromov M (1987) Entropy, homology and semialgebraic geometry. Séminaire Bourbaki, vol 1985/86. Astérisque No 145–146:225–240

    Google Scholar 

  119. Guivarc’h Y, Hardy J (1998) Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann Inst H Poincaré 24:73:98

    Google Scholar 

  120. Guckenheimer J (1979) Sensitive dependence on initial conditions for one‐dimensional maps. Commun Math Phys 70:133–160

    Article  MathSciNet  MATH  Google Scholar 

  121. Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Revised and corrected reprint of the 1983 original. In: Applied Mathematical Sciences, 42. Springer, New York

    Google Scholar 

  122. Guckenheimer J, Wechselberger M, Young LS (2006) Chaotic attractors of relaxation oscillators. Nonlinearity 19:701–720

    Article  MathSciNet  MATH  Google Scholar 

  123. Gurevic BM (1996) Stably recurrent nonnegative matrices. (Russian) Uspekhi Mat Nauk 51(3)(309):195–196; translation in: Russ Math Surv 51(3):551–552

    Google Scholar 

  124. Gurevic BM, Savchenko SV (1998) Thermodynamic formalism for symbolic Markov chains with a countable number of states. (Russian) Uspekhi Mat Nauk 53(2)(320):3–106; translation in: Russ Math Surv 53(2):245–344

    Google Scholar 

  125. Gutzwiller M (1990) Chaos in classical and quantum mechanics. In: Interdisciplinary Applied Mathematics, 1. Springer, New York

    Google Scholar 

  126. Hadamard J (1898) Les surfaces à courbures opposees et leurs lignes geodesiques. J Math Pures Appl 4:27–73

    Google Scholar 

  127. Hasselblatt B, Katok A (2003) A first course in dynamics. In: With a panorama of recent developments. Cambridge University Press, New York

    Chapter  Google Scholar 

  128. Hasselblatt B, Katok A (eds) (2002,2006) Handbook of dynamical systems, vol 1A and 1B. Elsevier, Amsterdam

    Google Scholar 

  129. Hennion H (1993) Sur un théorème spectral et son application aux noyaux lipchitziens. Proc Amer Math Soc 118:627–634

    MathSciNet  MATH  Google Scholar 

  130. Hénon M (1976) A two‐dimensional mapping with a strange attractor. Comm Math Phys 50:69–77

    Google Scholar 

  131. Hesiod (1987) Theogony. Focus/R. Pullins, Newburyport

    Google Scholar 

  132. Hochman M (2006) Upcrossing inequalities for stationary sequences and applications. arXiv:math/0608311

    Google Scholar 

  133. Hofbauer F (1979) On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Isr J Math 34(3):213–237

    Article  MathSciNet  MATH  Google Scholar 

  134. Hofbauer F (1985) Periodic points for piecewise monotonic transformations. Ergod Theory Dynam Syst 5:237–256

    Article  MathSciNet  MATH  Google Scholar 

  135. Hofbauer F, Keller G (1982) Ergodic properties of invariant measures for piecewise monotonic transformations. Math Z 180:119–140

    Article  MathSciNet  MATH  Google Scholar 

  136. Hofbauer F, Keller G (1990) Quadratic maps without asymptotic measure. Comm Math Phys 127:319–337

    Article  MathSciNet  MATH  Google Scholar 

  137. Hofer H, Zehnder E (1994) Symplectic invariants and Hamiltonian dynamics. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  138. Host B, Kra B (2005) Nonconventional ergodic averages and nilmanifolds. Ann of Math 161(2):397–488

    Article  MathSciNet  MATH  Google Scholar 

  139. Hua Y, Saghin R, Xia Z (2006) Topological Entropy and Partially Hyperbolic Diffeomorphisms. arXiv:math/0608720

    Google Scholar 

  140. Hunt FY (1998) Unique ergodicity and the approximation of attractors and their invariant measures using Ulam’s method. (English summary) Nonlinearity 11:307–317

    Article  MathSciNet  MATH  Google Scholar 

  141. Hunt BR, Sauer T, Yorke JA (1992) Prevalence: a translation‐invariant “almost every” on infinite‐dimensional spaces. Bull Amer Math Soc (NS) 27:217–238

    Article  MathSciNet  MATH  Google Scholar 

  142. Ibragimov I, Linnik Yu, Kingman JFC (ed) (trans) (1971) Independent and stationary sequences of random variables. Wolters‐Noordhoff, Groningen

    MATH  Google Scholar 

  143. Ionescu Tulcea CT, Marinescu G (1950) Théorie ergodique pour des classes d’opérations non complètement continues. (French) Ann of Math 52(2):140–147

    Article  MathSciNet  MATH  Google Scholar 

  144. Ishii Y (1997) Towards a kneading theory for Lozi mappings. I. A solution of the pruning front conjecture and the first tangency problem. Nonlinearity 10:731–747

    Article  MathSciNet  MATH  Google Scholar 

  145. Jakobson MV (1981) Absolutely continuous invariant measures for one‐parameter families of one‐dimensional maps. Comm Math Phys 81:39–88

    Article  MathSciNet  MATH  Google Scholar 

  146. Jenkinson O (2007) Optimization and majorization of invariant measures. Electron Res Announc Amer Math Soc 13:1–12

    Article  MathSciNet  MATH  Google Scholar 

  147. Katok A (1980) Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst Hautes Etudes Sci Publ Math No 51:137–173

    Article  MathSciNet  MATH  Google Scholar 

  148. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. In: Encyclopedia of Mathematics and its Applications, 54. With a supplementary chapter by: Katok A, Mendoza L. Cambridge University Press, Cambridge

    Google Scholar 

  149. Keller G (1984) On the rate of convergence to equilibrium in one‐dimensional systems. Comm Math Phys 96:181–193

    Article  MathSciNet  MATH  Google Scholar 

  150. Keller G (1990) Exponents, attractors and Hopf decompositions for interval maps. Ergod Theory Dynam Syst 10:717–744

    Article  MATH  Google Scholar 

  151. Keller G, Liverani C (1999) Stability of the spectrum for transfer operators. Ann Scuola Norm Sup Pisa Cl Sci 28(4):141–152

    MathSciNet  MATH  Google Scholar 

  152. Keller G, Nowicki T (1992) Spectral theory, zeta functions and the distribution of periodic points for Collet‐Eckmann maps. Comm Math Phys 149:31–69

    Article  MathSciNet  MATH  Google Scholar 

  153. Kifer Yu (1977) Small random perturbations of hyperbolic limit sets. (Russian) Uspehi Mat Nauk 32(1)(193):193–194

    MathSciNet  MATH  Google Scholar 

  154. Kifer Y (1986) Ergodic theory of random transformations. In: Progress in Probability and Statistics, 10. Birkhäuser Boston, Inc, Boston, MA

    Google Scholar 

  155. Kifer Y (1988) Random perturbations of dynamical systems. In: Progress in Probability and Statistics, 16. Birkhäuser Boston, Inc, Boston, MA

    Google Scholar 

  156. Kifer Yu (1990) Large deviations in dynamical systems and stochastic processes. Trans Amer Math Soc 321:505–524

    Article  MathSciNet  MATH  Google Scholar 

  157. Kifer Y (1997) Computations in dynamical systems via random perturbations. (English summary) Discret Contin Dynam Syst 3:457–476

    Article  MathSciNet  MATH  Google Scholar 

  158. Kolyada SF (2004) LI-Yorke sensitivity and other concepts of chaos. Ukr Math J 56:1242–1257

    Article  MathSciNet  Google Scholar 

  159. Kozlovski OS (2003) Axiom A maps are dense in the space of unimodal maps in the \({C\sp k}\) topology. Ann of Math 157(2):1–43

    Article  MathSciNet  MATH  Google Scholar 

  160. Kozlovski O, Shen W, van Strien S (2007) Density of Axiom A in dimension one. Ann Math 166:145–182

    Article  MATH  Google Scholar 

  161. Krengel U (1983) Ergodic Theorems. De Gruyter, Berlin

    Google Scholar 

  162. Krzyżewski K, Szlenk W (1969) On invariant measures for expanding differentiable mappings. Studia Math 33:83–92

    Google Scholar 

  163. Lacroix Y (2002) Possible limit laws for entrance times of an ergodic aperiodic dynamical system. Isr J Math 132:253–263

    Article  MathSciNet  MATH  Google Scholar 

  164. Ladler RL, Marcus B (1979) Topological entropy and equivalence of dynamical systems. Mem Amer Math Soc 20(219)

    Google Scholar 

  165. Lastoa A, Yorke J (1973) On the existence of invariant measures for piecewise monotonic transformations. Trans Amer Math Soc 186:481–488

    Article  MathSciNet  Google Scholar 

  166. Ledrappier F (1984) Proprietes ergodiques des mesures de Sinaï. Inst Hautes Etudes Sci Publ Math 59:163–188

    Article  MathSciNet  MATH  Google Scholar 

  167. Ledrappier F, Young LS (1985) The metric entropy of diffeomorphisms. I Characterization of measures satisfying Pesin’s entropy formula. II Relations between entropy, exponents and dimension. Ann of Math 122(2):509–539, 540–574

    Google Scholar 

  168. Leplaideur R (2004) Existence of SRB‐measures for some topologically hyperbolic diffeomorphisms. Ergod Theory Dynam Syst 24:1199–1225

    Article  MathSciNet  MATH  Google Scholar 

  169. Li TY, Yorke JA (1975) Period three implies chaos. Amer Math Monthly 82:985–992

    Article  MathSciNet  MATH  Google Scholar 

  170. Li M, Vitanyi P (1997) An introduction to Kolmogorov complexity and its applications. In: Graduate Texts in Computer Science, 2nd edn. Springer, New York

    Google Scholar 

  171. Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  172. Liu PD, Qian M, Zhao Y (2003) Large deviations in Axiom A endomorphisms. Proc Roy Soc Edinb Sect A 133:1379–1388

    Article  MathSciNet  MATH  Google Scholar 

  173. Liverani C (1995) Decay of Correlations. Ann Math 142:239–301

    Article  MathSciNet  MATH  Google Scholar 

  174. Liverani C (1995) Decay of Correlations in Piecewise Expanding maps. J Stat Phys 78:1111–1129

    Article  MathSciNet  MATH  Google Scholar 

  175. Liverani C (1996) Central limit theorem for deterministic systems. In: Ledrappier F, Lewowicz J, Newhouse S (eds) International conference on dynamical systems, Montevideo, 1995. Pitman Research Notes. In: Math 362:56–75

    Google Scholar 

  176. Liverani C (2001) Rigorous numerical investigation of the statistical properties of piecewise expanding maps – A feasibility study. Nonlinearity 14:463–490

    Article  MathSciNet  MATH  Google Scholar 

  177. Liverani C, Tsujii M (2006) Zeta functions and dynamical systems. (English summary) Nonlinearity 19:2467–2473

    Article  MathSciNet  MATH  Google Scholar 

  178. Lyubich M (1997) Dynamics of quadratic polynomials. I, II Acta Math 178:185–247, 247–297

    Google Scholar 

  179. Margulis G (2004) On some aspects of the theory of Anosov systems. In: With a survey by Richard Sharp: Periodic orbits of hyperbolic flows. Springer Monographs in Mathematics. Springer, Berlin

    Google Scholar 

  180. Mañé R (1982) An ergodic closing lemma. Ann of Math 116(2):503–540

    Google Scholar 

  181. Mañé R (1985) Hyperbolicity, sinks and measures in one‐dimensional dynamics. Commun Math Phys 100:495–524

    Google Scholar 

  182. Mañé R (1988) A proof of the C 1 stability conjecture. Publ Math IHES 66:161–210

    Google Scholar 

  183. Melbourne I, Nicol M (2005) Almost sure invariance principle for nonuniformly hyperbolic systems. Comm Math Phys 260(1):131–146

    Article  MathSciNet  MATH  Google Scholar 

  184. Milnor J, Thurston W (1988) On iterated maps of the interval. Dynamical systems, College Park, MD, 1986–87, pp 465–563. Lecture Notes in Math, 1342. Springer, Berlin

    Google Scholar 

  185. Misiurewicz M (1976) A short proof of the variational principle for a \({Z\sp{n}\sb{+}}\) action on a compact space. Bull Acad Polon Sci Sér Sci Math Astronom Phys 24(12)1069–1075

    MathSciNet  Google Scholar 

  186. Misiurewicz M (1976) Topological conditional entropy. Studia Math 55:175–200

    MathSciNet  MATH  Google Scholar 

  187. Misiurewicz M (1979) Horseshoes for mappings of the interval. Bull Acad Polon Sci Sér Sci Math 27:167–169

    Google Scholar 

  188. Misiurewicz M (1995) Continuity of entropy revisited. In: Dynamical systems and applications, pp 495–503. World Sci Ser Appl Anal 4. World Sci Publ, River Edge, NJ

    Google Scholar 

  189. Misiurewicz M, Smítal J (1988) Smooth chaotic maps with zero topological entropy. Ergod Theory Dynam Syst 8:421–424

    Google Scholar 

  190. Mora L, Viana M (1993) Abundance of strange attractors. Acta Math 171:1–71

    Article  MathSciNet  MATH  Google Scholar 

  191. Moreira CG, Palis J, Viana M (2001) Homoclinic tangencies and fractal invariants in arbitrary dimension. CRAS 333:475–480

    MathSciNet  MATH  Google Scholar 

  192. Murray JD (2002,2003) Mathematical biology. I and II An introduction, 3rd edn. In: Interdisciplinary Applied Mathematics, 17 and 18. Springer, New York

    Google Scholar 

  193. Nagaev SV (1957) Some limit theorems for stationary Markov chains. Theor Probab Appl 2:378–406

    Article  MathSciNet  Google Scholar 

  194. Newhouse SE (1974) Diffeomorphisms with infinitely many sinks. Topology 13:9–18

    Article  MathSciNet  MATH  Google Scholar 

  195. Newhouse SE (1989) Continuity properties of entropy. Ann of Math 129(2):215–235; Erratum: Ann of Math 131(2):409–410

    MathSciNet  Google Scholar 

  196. Nussbaum RD (1970) The radius of the essential spectrum. Duke Math J 37:473–478

    Article  MathSciNet  MATH  Google Scholar 

  197. Ornstein D (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352

    Article  MathSciNet  MATH  Google Scholar 

  198. Ornstein D, Weiss B (1988) On the Bernoulli nature of systems with some hyperbolic structure. Ergod Theory Dynam Syst 18:441–456

    Article  MathSciNet  Google Scholar 

  199. Ovid (2005) Metamorphosis. W.W. Norton, New York

    Google Scholar 

  200. Palis J (2000) A global view of dynamics and a conjecture on the denseness of tinitude of attractors. Asterisque 261:335–347

    MathSciNet  Google Scholar 

  201. Palis J, Yoccoz JC (2001) Fers a cheval non‐uniformement hyperboliques engendres par une bifurcation homocline et densite nulle des attracteurs. CRAS 333:867–871

    MathSciNet  MATH  Google Scholar 

  202. Pesin YB (1976) Families of invariant manifolds corresponding to non-zero characteristic exponents. Math USSR Izv 10:1261–1302

    Article  Google Scholar 

  203. Pesin YB (1977) Characteristic exponents and smooth ergodic theory. Russ Math Surv 324:55–114

    Article  MathSciNet  Google Scholar 

  204. Pesin Ya (1997) Dimension theory in dynamical systems. In: Contemporary views and applications. Chicago Lectures in Mathematics. University of Chicago Press, Chicago

    Google Scholar 

  205. Pesin Ya, Sinaĭ Ya (1982) Gibbs measures for partially hyperbolic attractors. Ergod Theory Dynam Syst 2:417–438

    Google Scholar 

  206. Piorek J (1985) On the generic chaos in dynamical systems. Univ Iagel Acta Math 25:293–298

    MathSciNet  Google Scholar 

  207. Plykin RV (2002) On the problem of the topological classification of strange attractors of dynamical systems. Uspekhi Mat Nauk 57:123–166. Translation in: Russ Math Surv 57:1163–1205

    Article  MathSciNet  Google Scholar 

  208. Poincare H (1892) Les methodes nouvelles de la mecanique céleste. Paris, Gauthier–Villars

    Google Scholar 

  209. Pollicott M, Sharp R (2002) Invariance principles for interval maps with an indifferent fixed point. Comm Math Phys 229:337–346

    Article  MathSciNet  MATH  Google Scholar 

  210. Przytycki F (1977) On U‑stability and structural stability of endomorphisms satisfying. Axiom A Studia Math 60:61–77

    MathSciNet  MATH  Google Scholar 

  211. Pugh C, Shub M (1999) Ergodic attractors. Trans Amer Math Soc 312:1–54

    Article  MathSciNet  Google Scholar 

  212. Pujals E, Rodriguez–Hertz F (2007) Critical points for surface diffeomorphisms. J Mod Dyn 1:615–648

    Google Scholar 

  213. Puu T (2000) Attractors, bifurcations, and chaos. In: Nonlinear phenomena in economics. Springer, Berlin

    Google Scholar 

  214. Rees M (1981) A minimal positive entropy homeomorphism of the 2-torus. J London Math Soc 23(2):537–550

    Article  MathSciNet  MATH  Google Scholar 

  215. Robinson RC (2004) An introduction to dynamical systems: continuous and discrete. Pearson Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  216. Rousseau–Egele J (1983) Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann Probab 11:772–788

    Google Scholar 

  217. Ruelle D (1968) Statistical mechanics of a one‐dimensional lattice gas. Comm Math Phys 9:267–278

    Article  MathSciNet  MATH  Google Scholar 

  218. Ruelle D (1976) A measure associated with axiom-A attractors. Amer J Math 98:619–654

    Article  MathSciNet  MATH  Google Scholar 

  219. Ruelle D (1978) An inequality for the entropy of differentiable maps. Bol Soc Brasil Mat 9:83–87

    Article  MathSciNet  MATH  Google Scholar 

  220. Ruelle D (1982) Repellers for real analytic maps. Ergod Theory Dyn Syst 2:99–107

    Article  MathSciNet  MATH  Google Scholar 

  221. Ruelle D (1989) The thermodynamic formalism for expanding maps. Comm Math Phys 125:239–262

    Article  MathSciNet  MATH  Google Scholar 

  222. Ruelle D (2004) Thermodynamic formalism. In: The mathematical structures of equilibrium statistical mechanics, 2nd edn. Cambridge Mathematical Library, Cambridge University Press, Cambridge

    Book  Google Scholar 

  223. Ruelle D (2005) Differentiating the absolutely continuous invariant measure of an interval map f with respect to f. Comm Math Phys 258:445–453

    Article  MathSciNet  MATH  Google Scholar 

  224. Ruette S (2003) On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains. Pacific J Math 209:366–380

    Article  MathSciNet  MATH  Google Scholar 

  225. Ruette S (2003) Chaos on the interval. http://www.math.u-psud.fr/~ruette

  226. Saari DG (2005) Collisions, rings, and other Newtonian N‑body problems. In: CBMS Regional Conference Series in Mathematics, 104. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence

    Google Scholar 

  227. Saperstone SH, Yorke JA (1971) Controllability of linear oscillatory systems using positive controls. SIAM J Control 9:253–262

    Article  MathSciNet  Google Scholar 

  228. Sarig O (1999) Thermodynamic formalism for countable Markov shifts. Ergod Theory Dynam Syst 19:1565–1593

    Article  MathSciNet  MATH  Google Scholar 

  229. Sarig O (2001) Phase Transitions for Countable Topological Markov Shifts. Commun Math Phys 217:555–577

    Article  MathSciNet  MATH  Google Scholar 

  230. Sataev EA (1992) Invariant measures for hyperbolic mappings with singularities. Uspekhi Mat Nauk 47:147–202. Translation in: Russ Math Surv 47:191–251

    MathSciNet  Google Scholar 

  231. Saussol B (2000) Absolutely continuous invariant measures for multidimensional expanding maps. Isr J Math 116:223–48

    Article  MathSciNet  MATH  Google Scholar 

  232. Saussol B (2006) Recurrence rate in rapidly mixing dynamical systems. Discret Contin Dyn Syst 15(1):259–267

    Article  MathSciNet  MATH  Google Scholar 

  233. Shub M (1987) Global stability of dynamical systems. Springer, New York

    MATH  Google Scholar 

  234. Simon R (1972) A 3‑dimensional Abraham‐Smale example. Proc Amer Math Soc 34:629–630

    MathSciNet  MATH  Google Scholar 

  235. Sinai Ya (1972) Gibbs measures in ergodic theory. Uspehi Mat Nauk 27(166):21–64

    MathSciNet  MATH  Google Scholar 

  236. Starkov AN (2000) Dynamical systems on homogeneous spaces. In: Translations of Mathematical Monographs, 190. American Mathematical Society, Providence, RI

    Google Scholar 

  237. Stewart P (1964) Jacobellis v Ohio. US Rep 378:184

    Google Scholar 

  238. Szász D (ed) (2000) Hard ball systems and the Lorentz gas. Encyclopedia of Mathematical Sciences, 101. In: Mathematical Physics, II. Springer, Berlin

    Google Scholar 

  239. Tsujii M (1992) A measure on the space of smooth mappings and dynamical system theory. J Math Soc Jpn 44:415–425

    Article  MathSciNet  MATH  Google Scholar 

  240. Tsujii M (2000) Absolutely continuous invariant measures for piecewise real‐analytic expanding maps on the plane. Comm Math Phys 208:605–622

    Article  MathSciNet  MATH  Google Scholar 

  241. Tsujii M (2000) Piecewise expanding maps on the plane with singular ergodic properties. Ergod Theory Dynam Syst 20:1851–1857

    Article  MathSciNet  MATH  Google Scholar 

  242. Tsujii M (2001) Absolutely continuous invariant measures for expanding piecewise linear maps. Invent Math 143:349–373

    Article  MathSciNet  MATH  Google Scholar 

  243. Tsujii M (2005) Physical measures for partially hyperbolic surface endomorphisms. Acta Math 194:37–132

    Article  MathSciNet  MATH  Google Scholar 

  244. Tucker W (1999) The Lorenz attractor exists. C R Acad Sci Paris Ser I Math 328:1197–1202

    Article  MathSciNet  MATH  Google Scholar 

  245. Vallée B (2006) Euclidean dynamics. Discret Contin Dyn Syst 15:281–352

    Google Scholar 

  246. van Strien S, Vargas E (2004) Real bounds, ergodicity and negative Schwarzian for multimodal maps. J Amer Math Soc 17:749–782

    Article  MathSciNet  MATH  Google Scholar 

  247. Vasquez CH (2007) Statistical stability for diffeomorphisms with dominated splitting. Ergod Theory Dynam Syst 27:253–283

    Article  MathSciNet  MATH  Google Scholar 

  248. Viana M (1993) Strange attractors in higher dimensions. Bol Soc Bras Mat (NS) 24:13–62

    Article  MathSciNet  MATH  Google Scholar 

  249. Viana M (1997) Multidimensional nonhyperbolic attractors. Inst Hautes Etudes Sci Publ Math No 85:63–96

    Article  MathSciNet  MATH  Google Scholar 

  250. Viana M (1997) Stochastic dynamics of deterministic systems. In: Lecture Notes 21st Braz Math Colloq IMPA. Rio de Janeiro

    Google Scholar 

  251. Viana M (1998) Dynamics: a probabilistic and geometric perspective. In: Proceedings of the International Congress of Mathematicians, vol I, Berlin, 1998. Doc Math Extra I:557–578

    MathSciNet  Google Scholar 

  252. Wang Q, Young LS (2003) Strange attractors in periodically‐kicked limit cycles and Hopf bifurcations. Comm Math Phys 240:509–529

    MathSciNet  MATH  Google Scholar 

  253. Weiss B (2002) Single orbit dynamics. Amer Math Soc, Providence

    Google Scholar 

  254. Yomdin Y (1987) Volume growth and entropy. Isr J Math 57:285–300

    Article  MathSciNet  MATH  Google Scholar 

  255. Yoshihara KI (2004) Weakly dependent stochastic sequences and their applications. In: Recent Topics on Weak and Strong Limit Theorems, vol XIV. Sanseido Co Ltd, Chiyoda

    Google Scholar 

  256. Young LS (1982) Dimension, entropy and Lyapunov exponents. Ergod Th Dynam Syst 6:311–319

    Google Scholar 

  257. Young LS (1985) Bowen–Ruelle measures for certain piecewise hyperbolic maps. Trans Amer Math Soc 287:41–48

    Article  MathSciNet  MATH  Google Scholar 

  258. Young LS (1986) Stochastic stability of hyperbolic attractors. Ergod Theory Dynam Syst 6:311–319

    MATH  Google Scholar 

  259. Young LS (1990) Large deviations in dynamical systems. Trans Amer Math Soc 318:525–543

    MathSciNet  MATH  Google Scholar 

  260. Young LS (1992) Decay of correlations for certain quadratic maps. Comm Math Phys 146:123–138

    Article  MathSciNet  MATH  Google Scholar 

  261. Young LS (1995) Ergodic theory of differentiable dynamical systems. Real and complex dynamical systems. Hillerad, 1993, pp 293–336. NATO Adv Sci Inst Ser C Math Phys Sci 464. Kluwer, Dordrecht

    Google Scholar 

  262. Young LS (1998) Statistical properties of dynamical systems with some hyperbolicity. Ann Math 585–650

    Google Scholar 

  263. Young LS (1999) Recurrence times and rates of mixing. Isr J Math 110:153–188

    Article  MATH  Google Scholar 

  264. Young LS, Wang D (2001) Strange attractors with one direction of instability. Comm Math Phys 218:1–97

    Article  MathSciNet  MATH  Google Scholar 

  265. Young LS, Wang D (2006) Nonuniformly expanding 1D maps. Commun Math Phys vol 264:255–282

    Article  MathSciNet  MATH  Google Scholar 

  266. Young LS, Wang D (2008) Toward a theory of rank one attractors. Ann Math 167:349–480

    Article  MathSciNet  MATH  Google Scholar 

  267. Zhang Y (1997) Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergod Theory Dynam Syst 17:739–756

    Article  MATH  Google Scholar 

Books and Reviews

  1. Baladi V (2000) The magnet and the butterfly: thermodynamic formalism and the ergodic theory of chaotic dynamics. (English summary). In: Development of mathematics 1950–2000, Birkhäuser, Basel, pp 97–133

    Chapter  Google Scholar 

  2. Bonatti C (2003) Dynamiques generiques: hyperbolicite et transitivite. In: Seminaire Bourbaki vol 2001/2002. Asterisque No 290:225–242

    MathSciNet  Google Scholar 

  3. Kuksin SB (2006) Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich

    Google Scholar 

  4. Liu PD, Qian M (1995) Smooth ergodic theory of random dynamical systems. In: Lecture Notes in Mathematics, 1606. Springer, Berlin

    Google Scholar 

  5. Ornstein D, Weiss B (1991) Statistical properties of chaotic systems. With an appendix by David Fried. Bull Amer Math Soc (NS) 24:11–116

    Article  MathSciNet  MATH  Google Scholar 

  6. Young LS (1999) Ergodic theory of chaotic dynamical systems. XIIth International Congress of Mathematical Physics, ICMP ’97, Brisbane, Int Press, Cambridge, MA, pp 131–143

    Google Scholar 

Download references

Acknowledgments

I am grateful for the advice and/or comments of the following colleagues: P. Collet, J.-R. Chazottes, and especially S. Ruette. I am also indebted to the anonymous referee.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Buzzi, J. (2012). Chaos and Ergodic Theory. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_6

Download citation

Publish with us

Policies and ethics