Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Measure Preserving Systems

  • Karl Petersen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1806-1_58

Article Outline

Glossary

Definition of the Subject

Introduction: The Dynamical Viewpoint

Where do Measure-Preserving Systems Come from?

Construction of Measures

Invariant Measures on Topological Dynamical Systems

Finding Finite Invariant Measures Equivalent to a Quasi-Invariant Measure

Finding σ-finite Invariant Measures Equivalent to a Quasi-Invariant Measure

Some Mathematical Background

Future Directions

Bibliography

Keywords

Invariant Measure Lebesgue Space Borel Probability Measure Markov Shift Measure Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Adler RL (1973) F‑expansions revisited. Lecture Notes in Math, vol 318. Springer, BerlinGoogle Scholar
  2. 2.
    Arnold LK (1968) On σ-finite invariant measures. Z Wahrscheinlichkeitstheorie Verw Geb 9:85–97MATHCrossRefGoogle Scholar
  3. 3.
    Billingsley P (1978) Ergodic theory and information. Robert E Krieger Publishing Co, Huntington NY, pp xiii,194; Reprint of the 1965 originalGoogle Scholar
  4. 4.
    Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York, pp xiv,593MATHGoogle Scholar
  5. 5.
    Brunel A (1966) Sur les mesures invariantes. Z Wahrscheinlichkeitstheorie Verw Geb 5:300–303MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Calderón AP (1955) Sur les mesures invariantes. C R Acad Sci Paris 240:1960–1962Google Scholar
  7. 7.
    Carathéodory C (1939) Die Homomorphieen von Somen und die Multiplikation von Inhaltsfunktionen. Annali della R Scuola Normale Superiore di Pisa 8(2):105–130Google Scholar
  8. 8.
    Carathéodory C (1968) Vorlesungen über Reelle Funktionen, 3rd edn. Chelsea Publishing Co, New York, pp x,718Google Scholar
  9. 9.
    Chacon RV (1964) A class of linear transformations. Proc Amer Math Soc 15:560–564MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Conway JB (1990) A Course in Functional Analysis, vol 96, 2nd edn. Springer, New York, pp xvi,399MATHGoogle Scholar
  11. 11.
    Dowker YN (1955) On measurable transformations in finite measure spaces. Ann Math 62(2):504–516MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dowker YN (1956) Sur les applications mesurables. C R Acad Sci Paris 242:329–331MathSciNetMATHGoogle Scholar
  13. 13.
    Frechet M (1924) Des familles et fonctions additives d’ensembles abstraits. Fund Math 5:206–251Google Scholar
  14. 14.
    Friedman NA (1970) Introduction to Ergodic Theory. Van Nostrand Reinhold Co., New York, pp v,143MATHGoogle Scholar
  15. 15.
    Furstenberg H (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Anal Math 31:204–256MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gowers WT (2001) A new proof of Szemerédi’s theorem. Geom Funct Anal 11(3):465–588MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gowers WT (2001) Erratum: A new proof of Szemerédi’s theorem. Geom Funct Anal 11(4):869MathSciNetGoogle Scholar
  18. 18.
    Green B, Tao T (2007) The primes contain arbitrarily long arithmetic progressions. arXiv:math.NT/0404188Google Scholar
  19. 19.
    Hahn H (1933) Über die Multiplikation total-additiver Mengenfunktionen. Annali Scuola Norm Sup Pisa 2:429–452Google Scholar
  20. 20.
    Hajian AB, Kakutani S (1964) Weakly wandering sets and invariant measures. Trans Amer Math Soc 110:136–151MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Halmos PR (1947) Invariant measures. Ann Math 48(2):735–754MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, pp xviii,802MATHCrossRefGoogle Scholar
  23. 23.
    Hopf E (1932) Theory of measure and invariant integrals. Trans Amer Math Soc 34:373–393MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hopf E (1937) Ergodentheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete, 1st edn. Springer, Berlin, pp iv,83Google Scholar
  25. 25.
    Khinchin AI (1949) Mathematical Foundations of Statistical Mechanics. Dover Publications Inc, New York, pp viii,179MATHGoogle Scholar
  26. 26.
    Kolmogorov AN (1956) Foundations of the Theory of Probability. Chelsea Publishing Co, New York, pp viii,84MATHGoogle Scholar
  27. 27.
    Ornstein DS (1960) On invariant measures. Bull Amer Math Soc 66:297–300MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Petersen K (1989) Ergodic Theory. Cambridge Studies in Advanced Mathematics, vol 2. Cambridge University Press, Cambridge, pp xii,329Google Scholar
  29. 29.
    Poincaré H (1987) Les Méthodes Nouvelles de la Mécanique Céleste. Tomes I, II,III. Les Grands Classiques Gauthier-Villars. Librairie Scientifique et Technique Albert Blanchard, ParisGoogle Scholar
  30. 30.
    Radjavi H, Rosenthal P (1973) Invariant subspaces, 2nd edn. Springer, Mineola, pp xii,248Google Scholar
  31. 31.
    Rohlin VA (1952) On the fundamental ideas of measure theory. Amer Math Soc Transl 1952:55MathSciNetGoogle Scholar
  32. 32.
    Rohlin VA (1960) New progress in the theory of transformations with invariant measure. Russ Math Surv 15:1–22MathSciNetCrossRefGoogle Scholar
  33. 33.
    Royden HL (1988) Real Analysis, 3rd edn. Macmillan Publishing Company, New York, pp xx,444MATHGoogle Scholar
  34. 34.
    Szemerédi E (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith 27:199–245Google Scholar
  35. 35.
    Tao T (2006) Szemerédi’s regularity lemma revisited. Contrib Discret Math 1:8–28MATHGoogle Scholar
  36. 36.
    Tao T (2006) Arithmetic progressions and the primes. Collect Math Extra:37–88Google Scholar
  37. 37.
    von Neumann J (1932) Einige Sätze über messbare Abbildungen. Ann Math 33:574–586CrossRefGoogle Scholar
  38. 38.
    Wright FB (1961) The recurrence theorem. Amer Math Mon 68:247–248MATHCrossRefGoogle Scholar
  39. 39.
    Young L-S (2002) What are SRB measures, and which dynamical systems have them? J Stat Phys 108:733–754MATHCrossRefGoogle Scholar

Books and Reviews

  1. 40.
    Billingsley P (1978) Ergodic Theory and Information. Robert E. Krieger Publishing Co, Huntington, pp xiii,194Google Scholar
  2. 41.
    Cornfeld IP, Fomin SV, Sinaĭ YG (1982) Ergodic Theory. Fundamental Principles of Mathematical Sciences, vol 245. Springer, New York, pp x,486Google Scholar
  3. 42.
    Denker M, Grillenberger C, Sigmund K (1976) Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics, vol 527. Springer, Berlin, pp iv,360Google Scholar
  4. 43.
    Friedman NA (1970) Introduction to Ergodic Theory. Van Nostrand Reinhold Co, New York, pp v,143Google Scholar
  5. 44.
    Glasner E (2003) Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol 101. American Mathematical Society, Providence, pp xii,384Google Scholar
  6. 45.
    Halmos PR (1960) Lectures on Ergodic Theory. Chelsea Publishing Co, New York, pp vii,101MATHGoogle Scholar
  7. 46.
    Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol 54. Cambridge University Press, Cambridge, pp xviii,802CrossRefGoogle Scholar
  8. 47.
    Hopf E (1937) Ergodentheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete, 1st edn. Springer, Berlin, pp iv,83Google Scholar
  9. 48.
    Jacobs K (1960) Neue Methoden und Ereignisse der Ergodentheorie. Jber Dtsch Math Ver 67:143–182MathSciNetGoogle Scholar
  10. 49.
    Petersen K (1989) Ergodic Theory. Cambridge Studies in Advanced Mathematics, vol 2. Cambridge University Press, Cambridge, pp xii,329Google Scholar
  11. 50.
    Royden HL (1988) Real Analysis, 3rd edn. Macmillan Publishing Company, New York, pp xx,444MATHGoogle Scholar
  12. 51.
    Rudolph DJ (1990) Fundamentals of Measurable Dynamics. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, pp x,168Google Scholar
  13. 52.
    Walters P (1982) An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol 79. Springer, New York, pp ix,250CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Karl Petersen
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA