Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Joinings in Ergodic Theory

  • Thierry de la Rue
Reference work entry

Article Outline


Definition of the Subject


Joinings of Two or More Dynamical Systems


Some Applications and Future Directions



Common Factor Ergodic Theory Product Measure Pointwise Convergence Bernoulli Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Ahn Y-H, Lemańczyk M (2003) An algebraic property of joinings. Proc Amer Math Soc 131(6):1711–1716 (electronic)Google Scholar
  2. 2.
    Bułatek W, Lemańczyk M, Lesigne E (2005) On the filtering problem for stationary random \({\mathbb{Z}\sp 2}\)-fields. IEEE Trans Inform Theory 51(10):3586–3593Google Scholar
  3. 3.
    Burton R, Rothstein A (1977) Isomorphism theorems in ergodic theory. Technical report, Oregon State UniversityGoogle Scholar
  4. 4.
    Chacon RV (1969) Weakly mixing transformations which are not strongly mixing. Proc Amer Math Soc 22:559–562MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    de la Rue T (2006) 2‑fold and 3‑fold mixing: why 3-dot-type counterexamples are impossible in one dimension. Bull Braz Math Soc (NS) 37(4):503–521MATHCrossRefGoogle Scholar
  6. 6.
    de la Rue T (2006) An introduction to joinings in ergodic theory. Discret Contin Dyn Syst 15(1):121–142MATHCrossRefGoogle Scholar
  7. 7.
    del Junco A (1983) A family of counterexamples in ergodic theory. Isr J Math 44(2):160–188MATHCrossRefGoogle Scholar
  8. 8.
    del Junco A, Lemańczyk M, Mentzen MK (1995) Semisimplicity, joinings and group extensions. Studia Math 112(2):141–164Google Scholar
  9. 9.
    del Junco A, Rahe M, Swanson L (1980) Chacon's automorphism has minimal self‐joinings. J Analyse Math 37:276–284MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    del Junco A, Rudolph DJ (1987) On ergodic actions whose self‐joinings are graphs. Ergod Theory Dynam Syst 7(4):531–557MATHGoogle Scholar
  11. 11.
    Derriennic Y, Frączek K, Lemańczyk M, Parreau F (2008) Ergodic automorphisms whose weak closure of off‐diagonal measures consists of ergodic self‐joinings. Colloq Math 110:81–115Google Scholar
  12. 12.
    Ferenczi S (1997) Systems of finite rank. Colloq Math 73(1):35–65MathSciNetMATHGoogle Scholar
  13. 13.
    Frączek K, Lemańczyk M (2004) A class of special flows over irrational rotations which is disjoint from mixing flows. Ergod Theory Dynam Syst 24(4):1083–1095Google Scholar
  14. 14.
    Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theory 1:1–49MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. In: M.B. Porter Lectures. Princeton University Press, PrincetonGoogle Scholar
  16. 16.
    Furstenberg H, Peres Y, Weiss B (1995) Perfect filtering and double disjointness. Ann Inst H Poincaré Probab Stat 31(3):453–465MathSciNetMATHGoogle Scholar
  17. 17.
    Garsia AM (1970) Topics in almost everywhere convergence. In: Lectures in Advanced Mathematics, vol 4. Markham Publishing Co, Chicago, ILGoogle Scholar
  18. 18.
    Glasner E (2003) Ergodic theory via joinings. In: Mathematical Surveys and Monographs, vol 101. American Mathematical Society, ProvidenceGoogle Scholar
  19. 19.
    Glasner E, Host B, Rudolph DJ (1992) Simple systems and their higher order self‐joinings. Isr J Math 78(1):131–142MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Glasner E, Thouvenot J-P, Weiss B (2000) Entropy theory without a past. Ergod Theory Dynam Syst 20(5):1355–1370MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Glasner S, Weiss B (1983) Minimal transformations with no common factor need not be disjoint. Isr J Math 45(1):1–8MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Goodson GR (2000) Joining properties of ergodic dynamical systems having simple spectrum. Sankhyā Ser A 62(3):307–317, Ergodic theory and harmonic analysis (Mumbai, 1999)MathSciNetMATHGoogle Scholar
  23. 23.
    Host B (1991) Mixing of all orders and pairwise independent joinings of systems with singular spectrum. Isr J Math 76(3):289–298MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Janvresse É, de la Rue T (2007) On a class of pairwise‐independent joinings. Ergod Theory Dynam Syst (to appear)Google Scholar
  25. 25.
    Kalikow SA (1984) Twofold mixing implies threefold mixing for rank one transformations. Ergod Theory Dynam Syst 4(2):237–259MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    King J (1986) The commutant is the weak closure of the powers, for rank-1 transformations. Ergod Theory Dynam Syst 6(3):363–384MATHCrossRefGoogle Scholar
  27. 27.
    King J (1988) Joining‐rank and the structure of finite rank mixing transformations. J Anal Math 51:182–227MATHCrossRefGoogle Scholar
  28. 28.
    Krieger W (1970) On entropy and generators of measure‐preserving transformations. Trans Amer Math Soc 149:453–464MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lemańczyk M, Parreau F, Thouvenot J-P (2000) Gaussian automorphisms whose ergodic self‐joinings are Gaussian. Fund Math 164(3):253–293Google Scholar
  30. 30.
    Lemańczyk M, Thouvenot J-P, Weiss B (2002) Relative discrete spectrum and joinings. Monatsh Math 137(1):57–75Google Scholar
  31. 31.
    Lesigne E, Rittaud B, and de la Rue T (2003) Weak disjointness of measure‐preserving dynamical systems. Ergod Theory Dynam Syst 23(4):1173–1198MATHCrossRefGoogle Scholar
  32. 32.
    Nadkarni MG (1998) Basic ergodic theory. In: Birkhäuser Advanced Texts: Basler Lehrbücher, 2nd edn. Birkhäuser, BaselGoogle Scholar
  33. 33.
    Nadkarni MG (1998) Spectral theory of dynamical systems. In: Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, BaselGoogle Scholar
  34. 34.
    Ornstein DS (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Ornstein DS (1972) On the root problem in ergodic theory. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California, Berkeley, 1970/1971, vol II: Probability theory. Univ California Press, Berkeley, pp 347–356Google Scholar
  36. 36.
    Ornstein DS (1974) Ergodic theory, randomness, and dynamical systems. In: James K Whittemore Lectures in Mathematics given at Yale University, Yale Mathematical Monographs, vol 5. Yale University Press, New HavenGoogle Scholar
  37. 37.
    Parreau F, Roy E (2007) Poisson joinings of Poisson suspension. PreprintGoogle Scholar
  38. 38.
    Ratner M (1983) Horocycle flows, joinings and rigidity of products. Ann of Math 118(2):277–313MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Rohlin VA (1949) On endomorphisms of compact commutative groups. Izvestiya Akad Nauk SSSR Ser Mat 13:329–340MathSciNetGoogle Scholar
  40. 40.
    Roy E (2007) Poisson suspensions and infinite ergodic theory. Ergod Theory Dynam Syst(to appear)Google Scholar
  41. 41.
    Rudolph DJ (1979) An example of a measure preserving map with minimal self‐joinings, and applications. J Anal Math 35:97–122MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Rudolph DJ (1990) The title is Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces. Oxford University Press, New YorkGoogle Scholar
  43. 43.
    Rudolph DJ (1994) A joinings proof of Bourgain's return time theorem. Ergod Theory Dynam Syst 14(1):197–203MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Ryzhikov VV (1992) Stochastic wreath products and joinings of dynamical systems. Mat Zametki 52(3):130–140, 160MathSciNetGoogle Scholar
  45. 45.
    Ryzhikov VV (1992) Mixing, rank and minimal self‐joining of actions with invariant measure. Mat Sb 183(3):133–160MathSciNetMATHGoogle Scholar
  46. 46.
    Ryzhikov VV (1993) Joinings and multiple mixing of the actions of finite rank. Funktsional Anal Prilozhen 27(2):63–78, 96MathSciNetGoogle Scholar
  47. 47.
    Ryzhikov VV (1993) Joinings, wreath products, factors and mixing properties of dynamical systems. Izv Ross Akad Nauk Ser Mat 57(1):102–128Google Scholar
  48. 48.
    Thorisson H (2000) Coupling, stationarity, and regeneration. In: Probability and its Applications (New York). Springer, New YorkGoogle Scholar
  49. 49.
    Thouvenot J-P (1995) Some properties and applications of joinings in ergodic theory. In: Ergodic theory and its connections with harmonic analysis, Alexandria, 1993. London Math Soc Lecture Note Ser, vol 205. Cambridge Univ Press, Cambridge, pp 207–235Google Scholar
  50. 50.
    Thouvenot J-P (1987) The metrical structure of some Gaussian processes. In: Proceedings of the conference on ergodic theory and related topics, II, Georgenthal, 1986. Teubner-Texte Math, vol 94. Teubner, Leipzig, pp 195–198Google Scholar
  51. 51.
    Veech WA (1982) A criterion for a process to be prime. Monatsh Math 94(4):335–341MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thierry de la Rue
    • 1
  1. 1.Laboratoire de Mathématiques Raphaël SalemCNRS – Université de RouenSaint Étienne du RouvrayFrance