Skip to main content

Fractals and Percolation

  • Reference work entry
  • 424 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Percolation

Percolation Clusters as Fractals

Anomalous Transport on Percolation Clusters: Diffusion and Conductivity

Networks

Summary and Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Percolation:

In the traditional meaning, percolation concerns the movement and filtering of fluids through porous materials. In this chapter, percolation is the subject of physical and mathematical models of porous media that describe the formation of a long-range connectivity in random systems and phase transitions. The most common percolation model is a lattice, where each site is occupied randomly with a probability p or empty with probability \({1-p}\). At low p values, there is no connectivity between the edges of the lattice. Above some concentration \({p_\mathrm{c}}\), the percolation threshold , connectivity appears between the edges. Percolation represents a geometric critical phenomena where p is the analogue of temperature in thermal phase transitions .

Fractal:

A fractal is a structure which can be subdivided into parts, where the shape of each part is similar to that of the original structure. This property of fractals is called self‐similarity , and it was first recognized by G.C. Lichtenberg more than 200 years ago. Random fractals represent models for a large variety of structures in nature, among them porous media, colloids, aggregates, flashes, etc. The concepts of self‐similarity and fractal dimensions are used to characterize percolation clusters. Self‐similarity is strongly related to renormalization properties used in critical phenomena , in general, and in percolation phase transition properties.

Bibliography

Primary Literature

  1. Aharony A (1986) In: Grinstein G, Mazenko G (eds) Directions in condensed matter physics. World Scientific, Singapore

    Google Scholar 

  2. Albert R, Barabasi A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandrowicz Z (1980) Phys Lett A 80:284

    Article  MathSciNet  Google Scholar 

  4. Alexander S, Orbach R (1982) J Phys Lett 43:L625

    Article  Google Scholar 

  5. Alexander S, Bernasconi J, Schneider WR, Orbach R (1981) Rev Mod Phys 53:175; Alexander S (1983) In: Deutscher G, Zallen R, Adler J (eds) Percolation Structures and Processes. Adam Hilger, Bristol, p 149

    Google Scholar 

  6. Avnir D (ed) (1989) The fractal approach to heterogeneos chemistry. Wiley, Chichester

    Google Scholar 

  7. Ben‐Avraham D, Havlin S (1982) J Phys A 15:L691; Havlin S, Ben‐Avraham D, Sompolinsky H (1983) Phys Rev A 27: 1730

    Google Scholar 

  8. Ben‐Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Google Scholar 

  9. Benguigui L (1984) Phys Rev Lett 53:2028

    Article  Google Scholar 

  10. Blumen A, Klafter J, Zumofen G (1986) In: Zschokke I (ed) Optical spectroscopy of glasses. Reidel, Dordrecht, pp 199–265

    Chapter  Google Scholar 

  11. Bollobás B (1985) Random graphs. Academic Press, London

    Google Scholar 

  12. Bouchaud JP, Georges A (1990) Phys Rep 195:127

    Article  MathSciNet  Google Scholar 

  13. Bunde A (1986) Adv Solid State Phys 26:113

    Article  Google Scholar 

  14. Bunde A, Havlin S (eds) (1996) Fractals and disordered systems, 2nd edn. Springer, Berlin; Bunde A, Havlin S (eds) (1995) Fractals in Science, 2nd edn. Springer, Berlin

    Google Scholar 

  15. Broadbent SR, Hammersley JM (1957) Proc Camb Phil Soc 53:629

    Article  MathSciNet  MATH  Google Scholar 

  16. Cardey JL, Grassberger P (1985) J Phys A 18:L267

    Article  Google Scholar 

  17. Cardy J (1998) J Phys A 31:L105

    Article  MATH  Google Scholar 

  18. Clerc JP, Giraud G, Laugier JM, Luck JM (1990) Adv Phys 39:191

    Article  Google Scholar 

  19. Cohen R, Havlin S (2003) Scale-free networks are ultrasmall. Phys Rev Lett 90:058701

    Article  Google Scholar 

  20. Cohen R, Havlin S (2008) Complex networks: Structure, stability and function. Cambridge University Press, Cambridge

    Google Scholar 

  21. Cohen R, Erez K, Ben‐Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85:4626

    Google Scholar 

  22. Coniglio A (1982) J Phys A 15:3829

    Article  MathSciNet  Google Scholar 

  23. Coniglio A (1982) Phys Rev Lett 46:250

    Article  Google Scholar 

  24. de Gennes PG (1976) La Recherche 7:919

    Google Scholar 

  25. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  26. Deutscher G, Zallen R, Adler J (eds) (1983) A collection of review articles: percolation structures and processes. Adam Hilger, Bristol

    Google Scholar 

  27. Domb C (1983) In: Deutscher G, Zallen R, Adler J (eds) Percolation structures and processes. Adam Hilger, Bristol; Domb C, Stoll E, Schneider T (1980) Contemp Phys 21: 577

    Google Scholar 

  28. Elam WT, Kerstein AR, Rehr JJ (1984) Phys Rev Lett 52:1515

    Article  Google Scholar 

  29. Erdős P, Rényi A (1959) On random graphs. Publicationes Mathematicae 6:290; (1960) Publ Math Inst Hung Acad Sci 5:17

    Google Scholar 

  30. Essam JW (1980) Rep Prog Phys 43:843

    Article  MathSciNet  Google Scholar 

  31. Family F, Landau D (eds) (1984) Kinetics of aggregation and gelation. North Holland, Amsterdam; For a review on gelation see: Kolb M, Axelos MAV (1990) In: Stanley HE, Ostrowsky N (eds) Correlatios and Connectivity: Geometric Aspects of Physics, Chemistry and Biology. Kluwer, Dordrecht, p 225

    Google Scholar 

  32. Flory PJ (1971) Principles of polymer chemistry. Cornell University, New York; Flory PJ (1941) J Am Chem Soc 63:3083–3091–3096; Stockmayer WH (1943) J Chem Phys 11:45

    Google Scholar 

  33. Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77

    Article  Google Scholar 

  34. Gouyet JF (1992) Phys A 191:301

    Article  Google Scholar 

  35. Grassberger P (1986) Math Biosci 62:157; (1985) J Phys A 18:L215; (1986) J Phys A 19:1681

    Google Scholar 

  36. Grassberger P (1992) J Phys A 25:5867

    Article  Google Scholar 

  37. Grassberger P (1999) J Phys A 32:6233

    Article  MathSciNet  MATH  Google Scholar 

  38. Grossman T, Aharony A (1987) J Phys A 20:L1193

    Article  Google Scholar 

  39. Haus JW, Kehr KW (1987) Phys Rep 150:263

    Article  Google Scholar 

  40. Havlin S, Ben‐Avraham D (1987) Adv Phys 36:695

    Google Scholar 

  41. Havlin S, Ben‐Avraham D (1987) Diffusion in random media. Adv Phys 36:659

    Google Scholar 

  42. Havlin S, Nossal R (1984) Topological properties of percolation clusters. J Phys A 17:L427

    Article  MathSciNet  Google Scholar 

  43. Havlin S, Nossal R, Trus B, Weiss GH (1984) J Stat Phys A 17:L957

    Article  MathSciNet  Google Scholar 

  44. Herrmann HJ (1986) Phys Rep 136:153

    Article  MathSciNet  Google Scholar 

  45. Herrmann HJ, Stanley HE (1984) Phys Rev Lett 53:1121; Hong DC, Stanley HE (1984) J Phys A 16:L475

    Google Scholar 

  46. Herrmann HJ, Stanley HE (1988) J Phys A 21:L829

    Article  MathSciNet  Google Scholar 

  47. Herrmann HJ, Hong DC, Stanley HE (1984) J Phys A 17:L261

    Article  Google Scholar 

  48. Kesten H (1982) Percolation theory for mathematicians. Birkhauser, Boston (A mathematical approach); Grimmet GR (1989) Percolation. Springer, New York

    Google Scholar 

  49. Kirkpatrick S (1979) In: Maynard R, Toulouse G (eds) Le Houches Summer School on Ill Condensed Matter. North Holland, Amsterdam

    Google Scholar 

  50. Kopelman R (1976) In: Fong FK (ed) Topics in applied physics, vol 15. Springer, Heidelberg

    Google Scholar 

  51. Ma SK (1976) Modern theory of critical phenomena. Benjamin, Reading

    Google Scholar 

  52. Mackay G, Jan N (1984) J Phys A 17:L757

    Article  Google Scholar 

  53. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco; Mandelbrot BB (1977) Fractals: Form, Chance and Dimension. Freeman, San Francisco

    Google Scholar 

  54. Meakin P, Majid I, Havlin S, Stanley HE (1984) J Phys A 17:L975

    Article  Google Scholar 

  55. Middlemiss KM, Whittington SG, Gaunt DC (1980) J Phys A 13:1835

    Article  Google Scholar 

  56. Montroll EW, Shlesinger MF (1984) In: Lebowitz JL, Montroll EW (eds) Nonequilibrium phenomena II: from stochastics to hydrodynamics. Studies in Statistical Mechanics, vol 2. North-Holland, Amsterdam

    Google Scholar 

  57. Paul G, Ziff RM, Stanley HE (2001) Phys Rev E 64:26115

    Article  Google Scholar 

  58. Pike R, Stanley HE (1981) J Phys A 14:L169

    Article  Google Scholar 

  59. Porto M, Bunde A, Havlin S, Roman HE (1997) Phys Rev E 56:1667

    Article  Google Scholar 

  60. Ritzenberg AL, Cohen RI (1984) Phys Rev B 30:4036

    Article  Google Scholar 

  61. Sahimi M (1993) Application of percolation theory. Taylor Francis, London

    Google Scholar 

  62. Saleur H, Duplantier B (1987) Phys Rev Lett 58:2325

    Article  MathSciNet  Google Scholar 

  63. Sapoval B, Rosso M, Gouyet JF (1985) J Phys Lett 46:L149

    Article  Google Scholar 

  64. Stauffer D, Aharony A (1994) Introduction to percolation theory, 2nd edn. Taylor Francis, London

    Google Scholar 

  65. Stanley HE (1971) Introduction to phase transition and critical phrenomena. Oxford University, Oxford

    Google Scholar 

  66. Stanley HE (1977) J Phys A 10:L211

    Article  Google Scholar 

  67. Stanley HE (1984) J Stat Phys 36:843

    Article  Google Scholar 

  68. Turcotte DL (1992) Fractals and chaos. In: Geology and geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  69. Toulouse G (1974) Nuovo Cimento B 23:234

    Article  Google Scholar 

  70. Tyc S, Halperin BI (1989) Phys Rev B 39:R877; Strelniker YM, Berkovits R, Frydman A, Havlin S (2004) Phys Rev E 69:R065105; Strelniker YM, Havlin S, Berkovits R, Frydman A (2005) Phys Rev E 72:016121; Strelniker YM (2006) Phys Rev B 73:153407

    Google Scholar 

  71. von Niessen W, Blumen A (1988) Canadian J For Res 18:805

    Article  Google Scholar 

  72. Webman I (1991) Phys Rev Lett 47:1496

    Article  Google Scholar 

  73. Webman I, Jortner J, Cohen MH (1976) Phys Rev B 14:4737

    Article  Google Scholar 

  74. Weiss GH, Rubin RJ (1983) Adv Chem Phys 52:363; Weiss GH (1994) Aspects and applications of the random walk. North Holland, Amsterdam

    Google Scholar 

  75. Ziff RM (1992) Phys Rev Lett 69:2670

    Article  Google Scholar 

  76. Ziff RM (1999) J Phys A 32:L457

    Article  MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Bak P (1996) How nature works: The science of self organized criticality. Copernicus, New York

    MATH  Google Scholar 

  2. Barabási A-L (2003) Linked: How everything is connected to everything else and what it means for business, science and everyday life. Plume

    Google Scholar 

  3. Bergman DJ, Stroud D (1992) Solid State Phys 46:147–269

    Article  Google Scholar 

  4. Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: From biological nets to the internet and www (physics). Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Eglash R (1999) African fractals: Modern computing and indigenous design. Rutgers University Press, New Brunswick, NJ

    MATH  Google Scholar 

  6. Feder J (1988) Fractals. Plenum, New York

    MATH  Google Scholar 

  7. Gleick J (1997) Chaos. Penguin Books, New York

    Google Scholar 

  8. Gould H, Tobochnik J (1988) An introduction to computer simulation methods. In: Application to physical systems. Addison-Wesley, Reading, MA

    Google Scholar 

  9. Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Pastor‐Satorras R, Vespignani A (2004) Evolution and structure of the internet: A statistical physics approach. Cambridge University Press, Cambridge

    Google Scholar 

  11. Peitgen HO, Jurgens H, Saupe D (1992) Chaos and fractals. Springer, New York

    Google Scholar 

  12. Peng G, Decheng T (1990) The fractal nature of a fracture surface. J Physics A 14:3257–3261

    Article  Google Scholar 

  13. Pikovsky A, Rosenblum M, Kurths J, Chirikov B, Cvitanovic P, Moss F, Swinney H (2003) Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Vicsek T (1992) Fractal growth phenomena. World Scientific, Singapore

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Strelniker, Y.M., Havlin, S., Bunde, A. (2012). Fractals and Percolation. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_36

Download citation

Publish with us

Policies and ethics