Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Biological Fluid Dynamics, Non-linear Partial Differential Equations

  • Antonio DeSimone
  • François Alouges
  • Aline Lefebvre
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1806-1_3

Article Outline

Glossary

Definition of the Subject

Introduction

The Mathematics of Swimming

The Scallop Theorem Proved

Optimal Swimming

The Three-Sphere Swimmer

Future Directions

Bibliography

Keywords

Mirror Symmetry Swivel 
This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Alouges F, DeSimone A, Lefebvre A (2008) Optimal strokes for low Reynolds number swimmers: an example. J Nonlinear Sci 18:277–302MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alouges F, DeSimone A, Lefebvre A (2008) Optimal strokes for low Reynolds number axisymmetric swimmers. Preprint SISSA 61/2008/MGoogle Scholar
  3. 3.
    Avron JE, Kenneth O, Oakmin DH (2005) Pushmepullyou: an efficient micro‐swimmer. New J Phys 7:234-1–8CrossRefGoogle Scholar
  4. 4.
    Becker LE, Koehler SA, Stone HA (2003) On self-propulsion of micro‐machines at low Reynolds numbers: Purcell's three-link swimmer. J Fluid Mechanics 490:15–35MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Berg HC, Anderson R (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382CrossRefGoogle Scholar
  6. 6.
    Lighthill MJ (1952) On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers. Comm Pure Appl Math 5:109–118MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Najafi A, Golestanian R (2004) Simple swimmer at low Reynolds numbers: Three linked spheres. Phys Rev E 69:062901-1–4CrossRefGoogle Scholar
  8. 8.
    Purcell EM (1977) Life at low Reynolds numbers. Am J Phys 45:3–11CrossRefGoogle Scholar
  9. 9.
    Tan D, Hosoi AE (2007) Optimal stroke patterns for Purcell's three-link swimmer. Phys Rev Lett 98:068105-1–4Google Scholar
  10. 10.
    Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc Roy Soc Lond A 209:447–461MATHCrossRefGoogle Scholar

Books and Reviews

  1. 11.
    Agrachev A, Sachkov Y (2004) Control Theory from the Geometric Viewpoint. In: Encyclopaedia of Mathematical Sciences, vol 87, Control Theory and Optimization. Springer, BerlinGoogle Scholar
  2. 12.
    Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  3. 13.
    Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Nijhoff, The HagueGoogle Scholar
  4. 14.
    Kanso E, Marsden JE, Rowley CW, Melli-Huber JB (2005) Locomotion of Articulated Bodies in a Perfect Fluid. J Nonlinear Sci 15:255–289MathSciNetMATHCrossRefGoogle Scholar
  5. 15.
    Koiller J, Ehlers K, Montgomery R (1996) Problems and Progress in Microswimming. J Nonlinear Sci 6:507–541MathSciNetMATHCrossRefGoogle Scholar
  6. 16.
    Montgomery R (2002) A Tour of Subriemannian Geometries, Their Geodesics and Applications. AMS Mathematical Surveys and Monographs, vol 91. American Mathematical Society, ProvidenceGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Antonio DeSimone
    • 1
  • François Alouges
    • 2
  • Aline Lefebvre
    • 2
  1. 1.SISSA-International School for Advanced StudiesTriesteItaly
  2. 2.Laboratoire de MathématiquesUniversité Paris-SudOrsay cedexFrance