Skip to main content
  • 566 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Basic Definitions and Examples

Differentiable Rigidity

Local Rigidity

Global Rigidity

Measure Rigidity

Future Directions

Acknowledgment

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Differentiable rigidity:

Differentiable rigidity refers to finding invariants to the differentiable conjugacy of dynamical systems, and, more general, group actions.

Local rigidity:

Local rigidity refers to the study of perturbations of homomorphisms from discrete or continuous groups into diffeomorphism groups.

Global rigidity:

Global rigidity refers to the classification of all group actions on manifolds satisfying certain conditions.

Measure rigidity:

Measure rigidity refers to the study of invariant measures for actions of abelian groups and semigroups.

Lattice:

A lattice in a Lie group is a discrete subgroup of finite covolume.

Conjugacy:

Two elements \({g_1,g_2}\) in a group G are said to be conjugated if there exists an element \({h\in G}\) such that \({g_1=h^{-1}g_2h}\). The element h is called conjugacy.

C k Conjugacy:

Two diffeomorphisms \({\phi_1, \phi_2}\) acting on the same manifold M are said to be C k-conjugated if there exists a C k diffeomorphism h of M such that \({\phi_1=h^{-1}\circ \phi_2\circ h}\). The diffeomorphism h is called C k conjugacy.

Bibliography

Primary Literature

  1. Anosov DV (1967) Geodesic flows on closed Riemannian manifolds with negative curvature. Proc Stek Inst 90:1–235

    MathSciNet  Google Scholar 

  2. Ballman W, Brin M, Eberlein P (1985) Structure of manifolds of non‐negative curvature. I. Ann Math 122:171–203

    Article  Google Scholar 

  3. Ballman W, Brin M, Spatzier R (1985) Structure of manifolds of non‐negative curvature. II. Ann Math 122:205–235

    Article  Google Scholar 

  4. Benoist Y, Labourie F (1993) Flots d'Anosov á distribuitions stable et instable différentiables. Invent Math 111:285–308

    Article  MathSciNet  MATH  Google Scholar 

  5. Benveniste EJ (2000) Rigidity of isometric lattice actions on compact Riemannian manifolds. Geom Func Anal 10:516–542

    Article  MathSciNet  MATH  Google Scholar 

  6. Berend D (1983) Multi‐invariant sets on tori. Trans AMS 280:509–532

    Article  MathSciNet  MATH  Google Scholar 

  7. Berend D (1984) Multi‐invariant sets on compact abelian groups. Trans AMS 286:505–535

    Article  MathSciNet  MATH  Google Scholar 

  8. Borel A, Prasad G (1992) Values of isotropic quadratic forms at S‑integral points. Compositio Math 83:347–372

    MathSciNet  MATH  Google Scholar 

  9. Brin MI, Pesin YA (1974) Partially hyperbolic dynamical systems. Izvestia 38:170–212

    MathSciNet  MATH  Google Scholar 

  10. Burns K, Pugh C, Shub M, Wilkinson A (2001) Recent results about stable ergodicity. In: Katok A, Pesin Y, de la Llave R, Weiss H (eds) Smooth ergodic theory and its applications, Seattle, 1999. Proc Symp Pure Math, vol 69. AMS, Providence, pp 327–366

    Chapter  Google Scholar 

  11. Calabi E (1961) On compact Riemannian manifolds with constant curvature. I. Proc Symp Pure Math, vol 3. AMS, Providence, pp 155–180

    Google Scholar 

  12. Calabi E, Vesentini E (1960) On compact, locally symmetric Kähler manifolds. Ann Math 17:472–507

    Article  MathSciNet  Google Scholar 

  13. Corlette K (1992) Archimedian superrigidity and hyperbolic geometry. Ann Math 135:165–182

    Article  MathSciNet  MATH  Google Scholar 

  14. Damianović D, Katok A (2005) Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic actions. Disc Cont Dynam Syst 13:985–1005

    Google Scholar 

  15. Damianović D, Katok A (2007) Local rigidity of partially hyperbolic actions KAM, I.method and \({\mathbb{Z}^k}\)-actions on the torus. Preprint available at http://www.math.psu.edu/katok_a

  16. Dani SG, Margulis GA (1990) Values of quadratic forms at integer points: an elementary approach. Enseign Math 36:143–174

    MathSciNet  MATH  Google Scholar 

  17. Dani SG, Smillie J (1984) Uniform distributions of horocycle orbits for Fuchsian groups. Duke Math J 51:185–194

    Article  MathSciNet  MATH  Google Scholar 

  18. Einsiedler M, Katok A (2003) Invariant measures on G/Γ for split simple Lie groups. Comm Pure Appl Math 56:1184–1221

    Article  MathSciNet  MATH  Google Scholar 

  19. Einsiedler M, Lindenstrauss E (2003) Rigidity properties of \({\mathbb{Z}^d}\)-actions on tori and solenoids. Elec Res Ann AMS 9:99–110

    MathSciNet  MATH  Google Scholar 

  20. Einsiedler M, Katok A, Lindenstrauss E (2006) Invariant measures and the set of exceptions to Littlewood conjecture. Ann Math 164:513–560

    Article  MathSciNet  MATH  Google Scholar 

  21. Farrell FT, Jones LE (1989) A topological analog of Mostow's rigidity theorem. J AMS 2:237–370

    Google Scholar 

  22. Feldman J (1993) A generalization of a result of R Lyons about measures on [0,1). Isr J Math 81:281–287

    Article  MATH  Google Scholar 

  23. Fisher D (2006) Local rigidity of group actions: past, present, future. In: Dynamics, Ergodic Theory and Geometry (2007). Cambridge University Press

    Google Scholar 

  24. Fisher D, Margulis GA (2003) Local rigidity for cocycles. In: Surv Diff Geom VIII. International Press, Cambridge, pp 191–234

    Google Scholar 

  25. Fisher D, Margulis GA (2004) Local rigidity of affine actions of higher rank Lie groups and their lattices. 2003

    Google Scholar 

  26. Fisher D, Margulis GA (2005) Almost isometric actions, property T, and local rigidity. Invent Math 162:19–80

    Article  MathSciNet  MATH  Google Scholar 

  27. Flaminio L, Forni G (2003) Invariant distributions and time averages for horocycle flows. Duke Math J 119:465–526

    Article  MathSciNet  MATH  Google Scholar 

  28. Forni G (1997) Solutions of the cohomological equation for area‐preserving flows on compact surfaces of higher genus. Ann Math 146:295–344

    Article  MathSciNet  MATH  Google Scholar 

  29. Franks J (1970) Anosov diffeomorphisms. In: Chern SS, Smale S (eds) Global Analysis (Proc Symp Pure Math, XIV, Berkeley 1968). AMS, Providence, pp 61–93

    Google Scholar 

  30. Franks J, Williams R (1980) Anomalous Anosov flows. In: Global theory of dynamical systems, Proc Inter Conf Evanston, 1979. Lecture Notes in Mathematics, vol 819. Springer, Berlin, pp 158–174

    Google Scholar 

  31. Furstenberg H (1963) A Poisson formula for semi‐simple Lie groups. Ann Math 77:335–386

    Article  MathSciNet  MATH  Google Scholar 

  32. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theor 1:1–49

    Article  MathSciNet  MATH  Google Scholar 

  33. Furstenberg H (1973) The unique ergodicity of the horocycle flow. In: Recent advances in topological dynamics, Proc Conf Yale Univ, New Haven 1972. Lecture Notes in Mathematics, vol 318. Springer, Berlin, pp 95–115

    Google Scholar 

  34. Ghys E (1985) Actions localement libres du groupe affine. Invent Math 82:479–526

    Article  MathSciNet  MATH  Google Scholar 

  35. Goetze E, Spatzier R (1999) Smooth classification of Cartan actions of higher rank semi‐simple Lie groups and their lattices. Ann Math 150:743–773

    Article  MathSciNet  MATH  Google Scholar 

  36. Gromov M, Schoen R (1992) Harmonic maps into singular spaces and p‑adic superrigidity for lattices in groups of rank one. Publ Math IHES 76:165–246

    MathSciNet  MATH  Google Scholar 

  37. Guysinsky M (2002) The theory of nonstationary normal forms. Erg Th Dyn Syst 22:845–862

    Article  MathSciNet  MATH  Google Scholar 

  38. Guysinsky M, Katok A (1998) Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations. Math Res Lett 5:149–163

    MathSciNet  MATH  Google Scholar 

  39. Hamilton R (1982) The inverse function theorem of Nash and Moser. Bull AMS 7:65–222

    Article  MathSciNet  MATH  Google Scholar 

  40. Helgason S (1978) Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York

    MATH  Google Scholar 

  41. Hirsch M, Pugh C, Shub M (1977) Invariant Manifolds. Lecture Notes in Mathematics, vol 583. Springer, Berlin

    Google Scholar 

  42. Host B (1995) Nombres normaux, entropie, translations. Isr J Math 91:419–428

    Article  MathSciNet  MATH  Google Scholar 

  43. Hurder S (1992) Rigidity of Anosov actions of higher rank lattices. Ann Math 135:361–410

    Article  MathSciNet  MATH  Google Scholar 

  44. Hurder S, Katok A (1990) Differentiability, rigidity and Godbillon‐Vey classes for Anosov flows. Publ Math IHES 72:5–61

    MathSciNet  MATH  Google Scholar 

  45. Johnson AS (1992) Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of integers. Isr J Math 77:211–240

    Article  MATH  Google Scholar 

  46. Journé JL (1988) A regularity lemma for functions of several variables. Rev Mat Iberoam 4:187–193

    Google Scholar 

  47. Kalinin B, Katok A (2002) Measurable rigidity and disjointness for \({\mathbb{Z}^k}\)-actions by toral automorphisms. Erg Theor Dyn Syst 22:507–523

    MathSciNet  MATH  Google Scholar 

  48. Kalinin B, Katok A (2007) Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori. J Modern Dyn 1:123–146

    MathSciNet  MATH  Google Scholar 

  49. Kalinin B, Spatzier R (2007) On the classification of Cartan actions. Geom Func Anal 17:468–490

    Article  MathSciNet  MATH  Google Scholar 

  50. Kanai M (1996) A new approach to the rigidity of discrete group actions. Geom Func Anal 6:943–1056

    Article  MathSciNet  MATH  Google Scholar 

  51. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54. Cambridge University Press, Cambridge

    Book  Google Scholar 

  52. Katok A, Katok S (1995) Higher cohomology for abelian groups of toral automorphisms. Erg Theor Dyn Syst 15:569–592

    Article  MathSciNet  MATH  Google Scholar 

  53. Katok A, Katok S (2005) Higher cohomology for abelian groups of toral automorphisms. II. The partially hyperbolic case, and corrigendum. Erg Theor Dyn Syst 25:1909–1917

    Article  MathSciNet  MATH  Google Scholar 

  54. Katok A, Kononenko A (1996) Cocycles' stability for partially hyperbolic systems. Math Res Lett 3:191–210

    MathSciNet  MATH  Google Scholar 

  55. Katok A, Lewis J (1991) Local rigidity for certain groups of toral automorphisms. Isr J Math 75:203–241

    Article  MathSciNet  MATH  Google Scholar 

  56. Katok A, Lewis J (1996) Global rigidity results for lattice actions on tori and new examples of vol preserving actions. Isr J Math 93:253–280

    Article  MathSciNet  MATH  Google Scholar 

  57. Katok A, Niţică V (2007) Rigidity of higher rank abelian cocycles with values in diffeomorphism groups. Geometriae Dedicata 124:109–131

    Google Scholar 

  58. Katok A, Niţică V () Differentiable rigidity of abelian group actions. Cambridge University Press (to appear)

    Google Scholar 

  59. Katok A, Spatzier R (1994) First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publ Math IHES 79:131–156

    MathSciNet  MATH  Google Scholar 

  60. Katok A, Spatzier R (1994) Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math Res Lett 1:193–202

    MathSciNet  MATH  Google Scholar 

  61. Katok A, Spatzier R (1996) Invariant measures for higher‐rank abelian actions. Erg Theor Dyn Syst 16:751–778; Katok A, Spatzier R (1998) Corrections to: Invariant measures for higher‐rank abelian actions.; (1996) Erg Theor Dyn Syst 16:751–778; Erg Theor Dyn Syst 18:503–507

    Article  MathSciNet  MATH  Google Scholar 

  62. Katok A, Spatzier R (1997) Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Trudy Mat Inst Stek 216:292–319

    MathSciNet  Google Scholar 

  63. Katok A, Lewis J, Zimmer R (1996) Cocycle superrigidity and rigidity for lattice actions on tori. Topology 35:27–38

    Article  MathSciNet  MATH  Google Scholar 

  64. Katok A, Niţică V, Török A (2000) Non‐abelian cohomology of abelian Anosov actions. Erg Theor Dyn Syst 2:259–288

    Google Scholar 

  65. Katok A, Katok S, Schmidt K (2002) Rigidity of measurable structure for \({{\mathbb{Z}}^d}\)-actions by automorphisms of a torus. Comm Math Helv 77:718–745

    Article  MathSciNet  MATH  Google Scholar 

  66. Kazhdan DA (1967) On the connection of a dual space of a group with the structure of its closed subgroups. Funkc Anal Prilozen 1:71–74

    Google Scholar 

  67. Lewis J (1991) Infinitezimal rigidity for the action of \({SL_n({\mathbb{Z}})}\) on \({{\mathbb{T}}^n}\). Trans AMS 324:421–445

    MATH  Google Scholar 

  68. Lindenstrauss E (2005) Rigidity of multiparameter actions. Isr Math J 149:199–226

    Article  MathSciNet  MATH  Google Scholar 

  69. Lindenstrauss E (2006) Invariant measures and arithmetic quantum unique ergodicity. Ann Math 163:165–219

    Article  MathSciNet  MATH  Google Scholar 

  70. Livshits A (1971) Homology properties of Y‑systems. Math Zametki 10:758–763

    Google Scholar 

  71. Livshits A (1972) Cohomology of dynamical systems. Izvestia 6:1278–1301 he Livšic cohomology equation. Ann Math 123:537–611

    Google Scholar 

  72. de la Llave R (1987) Invariants for smooth conjugacy of hyperbolic dynamical systems. I. Comm Math Phys 109:369–378

    Article  MathSciNet  MATH  Google Scholar 

  73. de la Llave R (1992) Smooth conjugacy and S-R-B measures for uniformly and non‐uniformly hyperbolic dynamical systems. Comm Math Phys 150:289–320

    Article  MathSciNet  MATH  Google Scholar 

  74. de la Llave R (1997) Analytic regularity of solutions of Livshits's cohomology equation and some applications to analytic conjugacy of hyperbolic dynamical systems. Erg Theor Dyn Syst 17:649–662

    Article  MATH  Google Scholar 

  75. de la Llave R, Moriyon R (1988) Invariants for smooth conjugacy of hyperbolic dynamical systems. IV. Comm Math Phys 116:185–192

    Article  MathSciNet  MATH  Google Scholar 

  76. de la Llave R, Marco JM, Moriyon R (1986) Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation. Ann Math 123:537–611

    Article  MATH  Google Scholar 

  77. Lyons R (1988) On measures simultaneously 2- and 3‑invariant. Isr J Math 61:219–224

    Article  MathSciNet  MATH  Google Scholar 

  78. Manning A (1974) There are no new Anosov diffeomorphisms on tori. Amer J Math 96:422–429

    Article  MathSciNet  MATH  Google Scholar 

  79. Marco JM, Moriyon R (1987) Invariants for smooth conjugacy of hyperbolic dynamical systems. I. Comm Math Phys 109:681–689

    Article  MathSciNet  MATH  Google Scholar 

  80. Marco JM, Moriyon R (1987) Invariants for smooth conjugacy of hyperbolic dynamical systems. III. Comm Math Phys 112:317–333

    Article  MathSciNet  MATH  Google Scholar 

  81. Margulis GA (1989) Discrete subgroups and ergodic theory. In: Number theory, trace formulas and discrete groups, Oslo, 1987. Academic Press, Boston, pp 277–298

    Google Scholar 

  82. Margulis GA (1991) Discrete subgroups of semi‐simple Lie groups. Springer, Berlin

    Book  Google Scholar 

  83. Margulis GA (1997) Oppenheim conjecture. In: Fields Medalists Lectures, vol 5. World Sci Ser 20th Century Math. World Sci Publ, River Edge, pp 272–327

    Chapter  Google Scholar 

  84. Margulis GA (2000) Problems and conjectures in rigidity theory. In: Mathematics: frontiers and perspectives. AMS, Providence, pp 161–174

    Google Scholar 

  85. Margulis GA, Qian N (2001) Local rigidity of weakly hyperbolic actions of higher rank real Lie groups and their lattices. Erg Theor Dyn Syst 21:121–164

    Article  MathSciNet  MATH  Google Scholar 

  86. Margulis GA, Tomanov G (1994) Invariant measures for actions of unipotent groups over local fields of homogenous spaces. Invent Math 116:347–392

    Article  MathSciNet  MATH  Google Scholar 

  87. Mieczkowski D (2007) The first cohomology of parabolic actions for some higher‐rank abelian groups and representation theory. J Modern Dyn 1:61–92

    Article  MathSciNet  MATH  Google Scholar 

  88. Milnor J (1971) Introduction to algebraic K‑theory. Princeton University Press, Princeton

    Google Scholar 

  89. Mok N, Siu YT, Yeung SK (1993) Geometric superrigidity. Invent Math 113:57–83

    Article  MathSciNet  MATH  Google Scholar 

  90. Mostow GD (1973) Strong rigidity of locally symmetric spaces. Ann Math Studies 78. Princeton University Press, Princeton

    Google Scholar 

  91. Newhouse SE (1970) On codimension one Anosov diffeomorphisms. Amer J Math 92:761–770

    Article  MathSciNet  MATH  Google Scholar 

  92. Niţică V, Török A (1995) Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher rank lattices. Duke Math J 79:751–810

    Google Scholar 

  93. Niţică V, Török A (1998) Regularity of the transfer map for cohomologous cocycles. Erg Theor Dyn Syst 18:1187–1209

    Google Scholar 

  94. Niţică V, Török A (2001) Local rigidity of certain partially hyperbolic actions of product type. Erg Theor Dyn Syst 21:1213–1237

    Google Scholar 

  95. Niţică V, Török A (2002) On the cohomology of Anosov actions. In: Rigidity in dynamics and geometry, Cambridge, 2000. Springer, Berlin, pp 345–361

    Google Scholar 

  96. Niţică V, Török A (2003) Cocycles over abelian TNS actions. Geom Ded 102:65–90

    Google Scholar 

  97. Oseledec VI (1968) A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dynamical systems. Trudy Mosk Mat Obsc 19:179–210

    MathSciNet  Google Scholar 

  98. Parry W (1999) The Livšic periodic point theorem for non‐abelian cocycles. Erg Theor Dyn Syst 19:687–701

    Article  MathSciNet  MATH  Google Scholar 

  99. Pugh C, Shub M (1972) Ergodicity of Anosov actions. Invent Math 15:1–23

    Article  MathSciNet  MATH  Google Scholar 

  100. Ratner M (1991) On Ragunathan's measure conjecture. Ann Math 134:545–607

    Article  MathSciNet  MATH  Google Scholar 

  101. Ratner M (1991) Ragunathan's topological conjecture and distributions of unipotent flows. Duke Math J 63:235–280

    Article  MathSciNet  MATH  Google Scholar 

  102. Ratner M (1995) Raghunathan's conjecture for Cartesians products of real and p-adic Lie groups. Duke Math J 77:275–382

    Article  MathSciNet  MATH  Google Scholar 

  103. Rudolph D (1990) × 2 and × 3 invariant measures and entropy. Erg Theor Dyn Syst 10:395–406

    Article  MathSciNet  MATH  Google Scholar 

  104. Schmidt K (1999) Remarks on Livšic' theory for nonabelian cocycles. Erg Theor Dyn Syst 19:703–721

    Article  MATH  Google Scholar 

  105. Selberg A (1960) On discontinuous groups in higher‐dimensional symmetric spaces. In: Contributions to function theory. Inter Colloq Function Theory, Bombay. Tata Institute of Fundamental Research, pp 147–164

    Google Scholar 

  106. Smale S (1967) Differentiable dynamical systems. Bull AMS 73:747–817

    Article  MathSciNet  MATH  Google Scholar 

  107. Spatzier R (1995) Harmonic analysis in rigidity theory. In: Ergodic theory and its connections with harmonic analysis. Alexandria, 1993. London Math Soc Lect Notes Ser, vol 205. Cambridge University Press, Cambridge, pp 153–205

    Google Scholar 

  108. Veech WA (1986) Periodic points and invariant pseudomeasures for toral endomorphisms. Erg Theor Dyn Syst 6:449–473

    Article  MathSciNet  MATH  Google Scholar 

  109. Verjovsky A (1974) Codimension one Anosov flows. Bul Soc Math Mex 19:49–77

    MathSciNet  MATH  Google Scholar 

  110. Weil A (1960) On discrete subgroups of Lie groups. I. Ann Math 72:369–384

    Article  MathSciNet  Google Scholar 

  111. Weil A (1962) On discrete subgroups of Lie groups. II. Ann Math 75:578–602

    Article  MathSciNet  Google Scholar 

  112. Weil A (1964) Remarks on the cohomology of groups. Ann Math 80:149–157

    Article  MathSciNet  MATH  Google Scholar 

  113. Zimmer R (1984) Ergodic theory and semi‐simple groups. Birhhäuser, Boston

    Book  Google Scholar 

  114. Zimmer R (1987) Actions of semi‐simple groups and discrete subgroups. Proc Inter Congress of Math (1986). AMS, Providence, pp 1247–1258

    Google Scholar 

  115. Zimmer R (1990) Infinitesimal rigidity of smooth actions of discrete subgroups of Lie groups. J Diff Geom 31:301–322

    MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. de la Harpe P, Valette A (1989) La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175

    Google Scholar 

  2. Feres R (1998) Dynamical systems and semi‐simple groups: An introduction. Cambridge Tracts in Mathematics, vol 126. Cambridge University Press, Cambridge

    Google Scholar 

  3. Feres R, Katok A (2002) Ergodic theory and dynamics of G‑spaces. In: Handbook in Dynamical Systems, 1A. Elsevier, Amsterdam, pp 665–763

    Chapter  Google Scholar 

  4. Gromov M (1988) Rigid transformation groups. In: Bernard D, Choquet‐Bruhat Y (eds) Géométrie Différentielle (Paris, 1986). Hermann, Paris, pp 65–139; Travaux en Cours. 33

    Google Scholar 

  5. Kleinbock D, Shah N, Starkov A (2002) Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory. In: Handbook in Dynamical Systems, 1A. Elsevier, Amsterdam, pp 813–930

    Chapter  Google Scholar 

  6. Knapp A (2002) Lie groups beyond an introduction, 2nd edn. Progress in Mathematics, 140. Birkhäuser, Boston

    MATH  Google Scholar 

  7. Raghunathan MS (1972) Discrete subgroups of Lie groups. Springer, Berlin

    Book  MATH  Google Scholar 

  8. Witte MD (2005) Ratner's theorems on unipotent flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by NSF Grant DMS-0500832.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Niţică, V. (2012). Ergodic Theory: Rigidity. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_24

Download citation

Publish with us

Policies and ethics