Skip to main content

Ergodicity and Mixing Properties

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition of the Subject

Introduction

Basics and Examples

Ergodicity

Ergodic Decomposition

Mixing

Hyperbolicity and Decay of Correlations

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bernoulli shift:

Mathematical abstraction of the scenario in statistics or probability in which one performs repeated independent identical experiments.

Markov chain:

A probability model describing a sequence of observations made at regularly spaced time intervals such that at each time, the probability distribution of the subsequent observation depends only on the current observation and not on prior observations.

Measure-preserving transformation:

A map from a measure space to itself such that for each measurable subset of the space, it has the same measure as its inverse image under the map.

Measure-theoretic entropy:

A non-negative (possibly infinite) real number describing the complexity of a measure‐preserving transformation.

Product transformation:

Given a pair of measure‐preserving transformations: T of X and S of Y, the product transformation is the map of \({X\times Y}\) given by \({(T\times S)(x,y)=(T(x),S(y))}\).

Bibliography

  1. Aaronson J (1997) An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence

    MATH  Google Scholar 

  2. Adams TM, Petersen K (1998) Binomial coefficient multiples of irrationals. Monatsh Math 125:269–278

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern S (1976) New proofs that weak mixing is generic. Invent Math 32:263–278

    Article  MathSciNet  MATH  Google Scholar 

  4. Avila A, Forni G (2007) Weak-mixing for interval exchange transformations and translation flows. Ann Math 165:637–664

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergelson V (1987) Weakly mixing pet. Ergodic Theory Dynam Systems 7:337–349

    Article  MathSciNet  MATH  Google Scholar 

  6. Birkhoff GD (1931) Proof of the ergodic theorem. Proc Nat Acad Sci 17:656–660

    Article  Google Scholar 

  7. Birkhoff GD, Smith PA (1924) Structural analysis of surface transformations. J Math 7:345–379

    Google Scholar 

  8. Boltzmann L (1871) Einige allgemeine Sätze über Wärmegleichgewicht. Wiener Berichte 63:679–711

    MATH  Google Scholar 

  9. Boltzmann L (1909) Wissenschaftliche Abhandlungen. Akademie der Wissenschaften, Berlin

    Google Scholar 

  10. Boshernitzan M, Berend D, Kolesnik G (2001) Irrational dilations of Pascal's triangle. Mathematika 48:159–168

    Article  MathSciNet  MATH  Google Scholar 

  11. Bowen R (1975) Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin

    MATH  Google Scholar 

  12. Bradley RC (2005) Basic properties of strong mixing conditions. A survey and some open questions. Probab Surv 2:107–144

    Article  MathSciNet  MATH  Google Scholar 

  13. Chacon RV (1969) Weakly mixing transformations which are not strongly mixing. Proc Amer Math Soc 22:559–562

    Article  MathSciNet  MATH  Google Scholar 

  14. Choquet G (1956) Existence des représentations intégrales au moyen des points extrémaux dans les cônes convexes. C R Acad Sci Paris 243:699–702

    MathSciNet  MATH  Google Scholar 

  15. Choquet G (1956) Unicité des représentations intégrales au moyen de points extrémaux dans les cônes convexes réticulés. C R Acad Sci Paris 243:555–557

    MathSciNet  MATH  Google Scholar 

  16. de la Rue T (2006) 2-fold and 3-fold mixing: why 3-dot-type counterexamples are impossible in one dimension. Bull Braz Math Soc (NS) 37(4):503–521

    Article  MATH  Google Scholar 

  17. Ehrenfest P, Ehrenfest T (1911) Begriffliche Grundlage der statistischen Auffassung in der Mechanik. No. 4. In: Encyclopädie der mathematischen Wissenschaften. Teubner, Leipzig

    Google Scholar 

  18. Feller W (1950) An Introduction to Probability and its Applications. Wiley, New York

    MATH  Google Scholar 

  19. Friedman NA, Ornstein DS (1970) On isomorphism of weak Bernoulli transformations. Adv Math 5:365–394

    Article  MathSciNet  MATH  Google Scholar 

  20. Furstenberg H (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Analyse Math 31:204–256

    Article  MathSciNet  MATH  Google Scholar 

  21. Furstenberg H (1981) Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  22. Furstenberg H, Weiss B (1978) The finite multipliers of infinite ergodic transformations. In: The Structure of Attractors in Dynamical Systems. Proc Conf, North Dakota State Univ, Fargo, N.D., 1977. Springer, Berlin

    Google Scholar 

  23. Garsia AM (1965) A simple proof of E. Hopf's maximal ergodic theory. J Math Mech 14:381–382

    MathSciNet  MATH  Google Scholar 

  24. Girsanov IV (1958) Spectra of dynamical systems generated by stationary Gaussian processes. Dokl Akad Nauk SSSR 119:851–853

    MathSciNet  MATH  Google Scholar 

  25. Góra P (1994) Properties of invariant measures for piecewise expanding one-dimensional transformations with summable oscillations of derivative. Ergodic Theory Dynam Syst 14:475–492

    Google Scholar 

  26. Halmos PA (1944) In general a measure-preserving transformation is mixing. Ann Math 45:786–792

    Article  MathSciNet  MATH  Google Scholar 

  27. Halmos P (1956) Lectures on Ergodic Theory. Chelsea, New York

    MATH  Google Scholar 

  28. Hoffman C, Heicklen D (2002) Rational maps are d‑adic bernoulli. Ann Math 156:103–114

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoffman C, Rudolph DJ (2002) Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann Math 76:79–101

    Article  MathSciNet  Google Scholar 

  30. Host B (1991) Mixing of all orders and pairwise independent joinings of systems with singular spectrum. Israel J Math 76:289–298

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu H (2004) Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergodic Theory Dynam Syst 24:495–524

    Article  MATH  Google Scholar 

  32. Kalikow S () Outline of ergodic theory. Notes freely available for download. See http://www.math.uvic.ca/faculty/aquas/kalikow/kalikow.html

  33. Kalikow S (1982) \({T,T^{-1}}\) transformation is not loosely Bernoulli. Ann Math 115:393–409

    Article  MathSciNet  MATH  Google Scholar 

  34. Kalikow S (1984) Twofold mixing implies threefold mixing for rank one transformations. Ergodic Theory Dynam Syst 2:237–259

    MathSciNet  Google Scholar 

  35. Kamae T (1982) A simple proof of the ergodic theorem using non-standard analysis. Israel J Math 42:284–290

    Article  MathSciNet  MATH  Google Scholar 

  36. Katok A (1980) Interval exchange transformations and some special flows are not mixing. Israel J Math 35:301–310

    Article  MathSciNet  MATH  Google Scholar 

  37. Katok A (1980) Smooth non-Bernoulli K-automorphisms. Invent Math 61:291–299

    Article  MathSciNet  MATH  Google Scholar 

  38. Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge, Cambridge

    Book  MATH  Google Scholar 

  39. Katznelson Y (1971) Ergodic automorphisms of \({\mathbb{T}^n}\) are Bernoulli shifts. Israel J Math 10:186–195

    Article  MathSciNet  MATH  Google Scholar 

  40. Katznelson Y, Weiss B (1982) A simple proof of some ergodic theorems. Israel J Math 42:291–296

    Article  MathSciNet  MATH  Google Scholar 

  41. Keane M, Smorodinsky M (1979) Bernoulli schemes of the same entropy are finitarily isomorphic. Ann Math 109:397–406

    Article  MathSciNet  MATH  Google Scholar 

  42. Keane MS, Petersen KE (2006) Nearly simultaneous proofs of the ergodic theorem and maximal ergodic theorem. In: Dynamics and Stochastics: Festschrift in Honor of M.S. Keane. Institute of Mathematical Statistics, pp 248–251, Bethesda MD

    Google Scholar 

  43. Kolmogorov AN (1958) New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Dokl Russ Acad Sci 119:861–864

    MathSciNet  MATH  Google Scholar 

  44. Koopman BO (1931) Hamiltonian systems and Hilbert space. Proc Nat Acad Sci 17:315–218

    Article  Google Scholar 

  45. Krámli A, Simányi N, Szász D (1991) The K‑property of three billiard balls. Ann Math 133:37–72

    Google Scholar 

  46. Ledrappier F (1978) Un champ Markovien peut être d'entropie nulle et mélangeant. C R Acad Sci Paris, Sér A-B 287:561–563

    MathSciNet  MATH  Google Scholar 

  47. Liverani C (2004) Decay of correlations. Ann Math 159:1275–1312

    Article  MathSciNet  MATH  Google Scholar 

  48. Masser DW (2004) Mixing and linear equations over groups in positive characteristic. Israel J Math 142:189–204

    Article  MathSciNet  MATH  Google Scholar 

  49. Masur H (1982) Interval exchange transformations and measured foliations. Ann Math 115:169–200

    Article  MathSciNet  MATH  Google Scholar 

  50. McCutcheon R, Quas A (2007) Generalized polynomials and mild mixing systems. Canad J Math (to appear)

    Google Scholar 

  51. Méla X, Petersen K (2005) Dynamical properties of the Pascal adic transformation. Ergodic Theory Dynam Syst 25:227–256

    Google Scholar 

  52. Newton D, Parry W (1966) On a factor automorphism of a normal dynamical system. Ann Math Statist 37:1528–1533

    Article  MathSciNet  MATH  Google Scholar 

  53. Ornstein DS (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352

    Article  MathSciNet  MATH  Google Scholar 

  54. Ornstein DS (1972) On the root problem in ergodic theory. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), vol II: Probability theory. Univ. California Press, pp 347–356

    Google Scholar 

  55. Ornstein DS (1973) An example of a Kolmogorov automorphism that is not a Bernoulli shift. Adv Math 10:49–62

    Article  MathSciNet  MATH  Google Scholar 

  56. Ornstein DS (1973) A K-automorphism with no square root and Pinsker's conjecture. Adv Math 10:89–102

    Article  MathSciNet  MATH  Google Scholar 

  57. Ornstein DS (1973) A mixing transformation for which Pinsker's conjecture fails. Adv Math 10:103–123

    Article  MathSciNet  MATH  Google Scholar 

  58. Ornstein DS (1974) Ergodic Theory, Randomness, and Dynamical Systems. Yale University Press, Newhaven

    MATH  Google Scholar 

  59. Ornstein DS, Shields PC (1973) An uncountable family of K‑automorphisms. Adv Math 10:89–102

    Article  MATH  Google Scholar 

  60. Ornstein DS, Weiss B (1973) Geodesic flows are Bernoullian. Israel J Math 14:184–198

    Article  MathSciNet  MATH  Google Scholar 

  61. Ornstein DS, Weiss B (1975) Unilateral codings of Bernoulli systems. Israel J Math 21:159–166

    Article  MathSciNet  MATH  Google Scholar 

  62. Oxtoby JC (1952) Ergodic sets. Bull Amer Math Soc 58:116–136

    Article  MathSciNet  MATH  Google Scholar 

  63. Parry W (1981) Topics in Ergodic Theory. Cambridge, Cambridge

    MATH  Google Scholar 

  64. Petersen K (1983) Ergodic Theory. Cambridge, Cambridge

    Book  MATH  Google Scholar 

  65. Petersen K, Schmidt K (1997) Symmetric Gibbs measures. Trans Amer Math Soc 349:2775–2811

    Article  MathSciNet  MATH  Google Scholar 

  66. Phelps R (1966) Lectures on Choquet's Theorem. Van Nostrand, New York

    MATH  Google Scholar 

  67. Pinsker MS (1960) Dynamical systems with completely positive or zero entropy. Soviet Math Dokl 1:937–938

    MathSciNet  MATH  Google Scholar 

  68. Quas A (1996) A C 1 expanding map of the circle which is not weak-mixing. Israel J Math 93:359–372

    Article  MathSciNet  MATH  Google Scholar 

  69. Quas A (1996) Non-ergodicity for C 1 expanding maps and g‑measures. Ergodic Theory Dynam Systems 16:531–543

    MathSciNet  MATH  Google Scholar 

  70. Rényi A (1957) Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hungar 8:477–493

    Google Scholar 

  71. Riesz F (1938) Some mean ergodic theorems. J Lond Math Soc 13:274–278

    Article  MathSciNet  Google Scholar 

  72. Rokhlin VA (1948) A ‘general’ measure-preserving transformation is not mixing. Dokl Akad Nauk SSSR Ser Mat 60:349–351

    MATH  Google Scholar 

  73. Rokhlin VA (1949) On endomorphisms of compact commutative groups. Izvestiya Akad Nauk SSSR Ser Mat 13:329–340

    MathSciNet  MATH  Google Scholar 

  74. Rokhlin VA, Sinai Y (1961) Construction and properties of invariant measurable partitions. Dokl Akad Nauk SSSR 141:1038–1041

    MathSciNet  Google Scholar 

  75. Rudin W (1966) Real and Complex Analysis. McGraw Hill, New York

    MATH  Google Scholar 

  76. Rudolph DJ (1990) Fundamentals of Measurable Dynamics. Oxford, Oxford University Press

    MATH  Google Scholar 

  77. Ryzhikov VV (1993) Joinings and multiple mixing of the actions of finite rank. Funct Anal Appl 27:128–140

    Article  MathSciNet  MATH  Google Scholar 

  78. Shields P, Thouvenot J-P (1975) Entropy zero × Bernoulli processes are closed in the \({\bar{d}}\)-metric. Ann Probab 3:732–736

    Article  MathSciNet  MATH  Google Scholar 

  79. Simányi N (2003) Proof of the Boltzmann–Sinai ergodic hypothesis for typical hard disk systems. Invent Math 154:123–178

    Google Scholar 

  80. Simányi N (2004) Proof of the ergodic hypothesis for typical hard ball systems. Ann Henri Poincaré 5:203–233

    Google Scholar 

  81. Simányi N, Szász D (1999) Hard ball systems are completely hyperbolic. Ann Math 149:35–96

    Google Scholar 

  82. Sinai YG (1959) On the notion of entropy of a dynamical system. Dokl Russ Acad Sci 124:768–771

    MathSciNet  MATH  Google Scholar 

  83. Sinai YG (1964) On a weak isomorphism of transformations with invariant measure. Mat Sb (NS) 63:23–42

    MathSciNet  Google Scholar 

  84. Sinai YG (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat Nauk 25:141–192

    MathSciNet  MATH  Google Scholar 

  85. Sinai Y (1976) Introduction to Ergodic Theory. Princeton, Princeton, translation of the 1973 Russian original

    MATH  Google Scholar 

  86. Sinai YG, Chernov NI (1987) Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Uspekhi Mat Nauk 42:153–174, 256

    MathSciNet  Google Scholar 

  87. Smorodinsky M (1971) A partition on a Bernoulli shift which is not weakly Bernoulli. Math Systems Th 5:201–203

    Article  MathSciNet  MATH  Google Scholar 

  88. Veech W (1982) Gauss measures for transformations on the space on interval exchange maps. Ann Math 115:201–242

    Article  MathSciNet  MATH  Google Scholar 

  89. Vershik A (1974) A description of invariant measures for actions of certain infinite-dimensional groups. Soviet Math Dokl 15:1396–1400

    MATH  Google Scholar 

  90. Vershik A (1981) Uniform algebraic approximation of shift and multiplication operators. Soviet Math Dokl 24:97–100

    MATH  Google Scholar 

  91. von Neumann J (1932) Proof of the quasi-ergodic hypothesis. Proc Nat Acad Sci USA 18:70–82

    Article  Google Scholar 

  92. Walters P (1982) An Introduction to Ergodic Theory. Springer, Berlin

    Book  MATH  Google Scholar 

  93. Williams D (1991) Probability with Martingales. Cambridge, Cambridge

    Book  MATH  Google Scholar 

  94. Young LS (1995) Ergodic theory of differentiable dynamical systems. In: Real and Complex Dynamical Systems (Hillerød, 1993). Kluwer, Dordrecht, pp 293–336

    Chapter  Google Scholar 

  95. Young LS (1998) Statistical properties of dynamical systems with some hyperbolicity. Ann Math 147:585–650

    Article  MATH  Google Scholar 

  96. Yuzvinskii SA (1967) Metric automorphisms with a simple spectrum. Soviet Math Dokl 8:243–245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Quas, A. (2012). Ergodicity and Mixing Properties. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_15

Download citation

Publish with us

Policies and ethics