Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Hierarchical Dynamics

  • Martin Nilsson Jacobi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_97

Article Outline

Glossary

Definition

Introduction

Overview

Temporal Hierarchies: Separation of Time Scales

Structural Hierarchies: Foliations

Conclusion

Future Directions

Acknowledgment

Bibliography

Keywords

Manifold Agglomeration Metaphor Fist 
This is a preview of subscription content, log in to check access

Notes

Acknowledgment

The author would like to thank Olof Görnerup and Kolbjørn Tuntrøm fordiscussions and comments on the manuscript. The author would also like to acknowledge support from the EU integrated project FP6-IST-FET PACE, by EMBIO,a European Project in the EU FP6 NEST initiative, and by MORPHEX, a European Project in the EU FP6 NEST initiative.

Bibliography

Primary Literature

  1. 1.
    Arnold VI (1989) Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Barr DR, Thomas MU (1977) An eigenvector condition for Markov chain lumpability. Oper Res 25(6):1028–1031MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beck C, Schlögl F (1993) Thermodynamics of chaotic systems, Cambridge Nonlinear Science Series, vol 4. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Boothby WM (2002) An introduction to differentiable manifolds and Riemannian geometry, Pure and Applied Mathematics, vol 120, 2nd edn. Academic PressGoogle Scholar
  5. 5.
    Caroli B, Caroli C, Roulet B (1979) Diffusion in a bistable potential: a systematic wkb treatment. J Stat Phys 21:415–536CrossRefGoogle Scholar
  6. 6.
    Crutchfield J, Young K (1989) Inferring statistical complexity. Phys Rev Lett 63:105MathSciNetCrossRefGoogle Scholar
  7. 7.
    Deuflhard P, Huisinga W, Fischer A, Schütte C (2000) Identification of almost invariant aggregates in reversible nearly uncoupled markov chains. Linear Algebra Appl 315:39–59Google Scholar
  8. 8.
    Dorfman JR (1998) An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics, vol 14. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Egri-Nagy A (2005) Algebraic hierarchical decompositions of finite state automata a computational approach. Ph D thesis, University of HertfordshireGoogle Scholar
  10. 10.
    Foias C, Jolly MS, Kevrekidis IG, Sell GR, Titi ES (1988) On the computation of inertial manifolds. Phys Lett A 131(7–8):433–436MathSciNetCrossRefGoogle Scholar
  11. 11.
    Foias C, Sell GR, Temam R (1988) Inertial manifolds for non‐linear evolutionary equations. J Differ Equ 73:309–353MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Fontana W, Buss LW (1996) The barrier of objects: From dynamical systems to bounded organizations. In: Casti J, Karlqvist A (eds) Barriers and Boundaries. Addison‐Wesley, Reading, pp 56–116Google Scholar
  13. 13.
    Gardiner C (2004) Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, vol 13, 3rd edn. Springer, BerlinGoogle Scholar
  14. 14.
    Givon D, Kupferman R, Stuart A (2004) Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17:55–127MathSciNetCrossRefGoogle Scholar
  15. 15.
    Godfreyt SE, Princet GE (1991) A canonical reduction of order for the kepler problem. J Phys A: Math Theor 24:5465–5475CrossRefGoogle Scholar
  16. 16.
    Goldenfeld N (1992) Lectures on Phase Transitions and the Renormalization Group. Perseus Books, OxfordGoogle Scholar
  17. 17.
    Gorban A, Karlin I (2005) Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics. Springer, BerlinGoogle Scholar
  18. 18.
    Haken H (1983) Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self‐Organization in Physics, Chemistry, and Biology, 3rd edn.Springer, New YorkMATHGoogle Scholar
  19. 19.
    Hänggi P, Talkner P, Borkovec M (1990) Reaction‐rate theory: fifty years after kramers. Rev Mod Phys 62(2):251–341Google Scholar
  20. 20.
    Jost J, Bertschingera N, Olbricha E, Aya N, Frankela S (2007) An information theoretic approach to system differentiation on the basis of statistical dependencies between subsystems. Physica A 378(1):1–10CrossRefGoogle Scholar
  21. 21.
    Just W, Kantz H, Rödenbeck C, Helm M (2001) Stochastic modelling: Replacing fast degrees of freedom by noise. J Phys A: Math Theor 34:3199–3213Google Scholar
  22. 22.
    Just W, Gelfert K, Baba N, Riegert A, Kantz H (2003) Elimination of fast chaotic degrees of freedom: On the accuracy of the born approximation. J Stat Phys 112:277–292MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kemeny JG, Snell JL (1976) Finite Markov Chains, 2nd edn. Springer, New YorkMATHGoogle Scholar
  24. 24.
    Krohn K, Rhodes J (1965) Algebraic theory of machines. i. prime decomposition theorem for finite semigroups and machines. Trans Am Math Soc 116:450–464MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lichtenberg AJ, Lieberman MA (1983) Regular and Stochastic Motion, Applied Mathematical Sciences, vol 38. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Lorch E (1962) Spectral theory. Oxford University Press, New YorkMATHGoogle Scholar
  27. 27.
    Maler O (1995) A decomposition theorem for probabilistic transition systems.Theor Comput Sci 145(1–2):391–396MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Mallet-Paret J, Sell GS (1988) Inertial manifolds for reaction diffusion equations in higher space dimensions. J Am Math Soc 1(4):805–866MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mane R (1977) Reduction of semilinear parabolic equations of finite dimensional c 1 flows. In: Geometry and Topology, no. 597 in Lecture Notes in Mathematics. Springer, New York, pp 361–378Google Scholar
  30. 30.
    Marmo G, Saletan EJ, Simoni A, Vitale B (1985) Dynamical Systems: a differential geometric approach to symmetry and reduction. Wiley, New YorkMATHGoogle Scholar
  31. 31.
    Marsden JE, Ratiu TS (2002) Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 2nd edn. Springer, New YorkGoogle Scholar
  32. 32.
    Marsden J, Misiolek G, Ortega JP, Perlmutter M, Ratiu T (2007) Hamiltonian Reduction by Stages. Lecture Notes in Mathematics. Springer, New YorkGoogle Scholar
  33. 33.
    McLachlan RI, Perlmutter M, Quispel GRW (1998) Numerical integrators that preserve symmetries and reversing symmetries. SIAM J Numer Anal 35(2):586–599MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    McLachlan RI, Perlmutter M, Quispel GRW (2003) Lie group foliations: dynamical systems and integrators. Futur Gener Comput Syst 19(7):1207–1219CrossRefGoogle Scholar
  35. 35.
    Molino P (1988) Riemannian Foliations. Birkhäuser, BostonMATHCrossRefGoogle Scholar
  36. 36.
    Nilsson Jacobi M, Görnerup O A dual eigenvector condition on lumpability in markov chains. To be publishedGoogle Scholar
  37. 37.
    Olver P (2000) Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 2nd edn. Springer, New YorkGoogle Scholar
  38. 38.
    Packard N, Crutchfield J, Farmer D, Shaw R (1980) Geometry from a time series.Phys Rev Lett 45:712–716CrossRefGoogle Scholar
  39. 39.
    Rega G, Troger H (2005) Dimension reduction of dynamical systems: Methods, models. Nonlinear Dyn 41:1–15MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Riegert A, Baba N, Gelfert K, Just W, Kantz H (2005) Hamiltonian chaos acts like a finite energy reservoir: Accuracy of the Fokker–Planck approximation.Phys Rev Lett 94:54–103CrossRefGoogle Scholar
  41. 41.
    Risken H, Frank T (1996) The Fokker–Planck Equation: Methods of Solutions and Applications, 2nd edn. Springer Series in Synergetics.Springer, BerlinGoogle Scholar
  42. 42.
    Ruelle D (1989) Chaotic evolution and strange attractors. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  43. 43.
    Ruelle D (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat Phys 95(1–2):393–468MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Sanders JA, Verhulst F (1985) Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol 59. Springer, New YorkCrossRefGoogle Scholar
  45. 45.
    Sauer T, Yorke JA, Casdagli M (1991) Embedolgy. J Stat Phys 65:579–616MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Schulman LS (1996) Techniques and applications of path integration. John Wiley, New YorkGoogle Scholar
  47. 47.
    Shalizi C (2001) Causal architecture, complexity and self‐organization in time series and cellular automata. Ph D thesis, University of WisconsinGoogle Scholar
  48. 48.
    Shalizi C, Crutchfield J (2001) Computational mechanics: Pattern and prediction, structure and simplicity. J Stat Phys 104:816MathSciNetCrossRefGoogle Scholar
  49. 49.
    Shalizi C, Moore C (2003) What is a macrostate? Subjective observations and objective dynamics. http://arxiv.org/abs/cond-mat/0303625
  50. 50.
    Shalizi C, Shalizi K (2004) Blind construction of optimal nonlinear recursive predictors for discrete sequences. In: AUAI '04: Proceedings of the 20th conference on Uncertainty in artificial intelligence, AUAI Press, Arlington, pp 504–511Google Scholar
  51. 51.
    Simon H (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467–482Google Scholar
  52. 52.
    Smale S (1970) Topology and mechanics. Invent Math 10(4):305–331MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L (eds) Dynamical Systems and Turbulence, Warwick 1980. Springer, Berlin, p 366CrossRefGoogle Scholar
  54. 54.
    Zwanzig R (1960) Ensemble methods in the theory of irreversibility. J Chem Phys 33:1338MathSciNetCrossRefGoogle Scholar
  55. 55.
    Zwanzig R (2001) Nonequilibrium statistical mechanics. Oxford University Press, New YorkGoogle Scholar

Books and Reviews

  1. 56.
    Anderson PW (1972) More is Different. Science 177(4047):393–396CrossRefGoogle Scholar
  2. 57.
    Badii R, Politi A (1997) Complexity: Hierarchical structures and scaling in physics. Cambridge Nonlinear Science Series, vol 6. Cambridge University Press, CambridgeGoogle Scholar
  3. 58.
    van Kampen NG (1985) Elimination of fast variables. Phys Rep 124(2):69–160MathSciNetCrossRefGoogle Scholar
  4. 59.
    Laughlin RB, Pines D (2000) The theory of everything Proc Natl Acad Sci 97(1):28–31MathSciNetCrossRefGoogle Scholar
  5. 60.
    Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P (2000) The middle way. Proc Natl Acad Sci 97(1):32–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martin Nilsson Jacobi
    • 1
  1. 1.Complex Systems Group, Department of Energy and EnvironmentChalmers University of TechnologyGothenburgSweden