Skip to main content

Growth Models for Networks

  • Reference work entry
Computational Complexity
  • 261 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Equilibrium and Nonequilibrium Random Networks

Random Recursive Graphs (Trees)

Recursive Trees Versus Equilibrium Connected Trees

The Barabási–Albert Model

General Preferential Attachment

Finite Size Effects

Hidden Variables

Condensation of Edges

Weighted Growing Networks

Connected Components in Growing Networks

Significance of Loops

Accelerated Growth of Networks

Critique of the Preferential Attachment Mechanism

Optimization-Based Models

Deterministic Graphs

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Random network :

A random network is a statistical ensemble: a given set of graphs and their statistical weights – realization probabilities. Formulating a network model, one defines the full set of members of the ensemble and indicates corresponding statistical weights or rules generating these weights.

Nonequilibrium random network:

Nonequilibrium random networks are nonequilibrium statistical ensembles of graphs. A growing network is a very particular case of a nonequilibrium one, with a growing number of edges and vertices.

Recursive network:

A recursive network is a growing network, where new edges connect only new vertices to already existing ones. In recursive networks, no new edges emerge between already existing vertices.

Tree :

A tree is a graph without loops (cycles ). The absence of loops crucially simplifies the description of these networks.

Random recursive graph (tree ):

In graph theory, the random recursive graph is a tree growing in the following way: at each time step, a new vertex is attached to one of the existing vertices chosen with equal probability.

Degree :

Degree – a total number of connections of a vertex – is the simplest local property of a network. A vertex degree distribution is the probability that a vertex in a network has a given degree.

Heavy‐tailed degree distributions :

These are degree distributions with divergent higher moments in the infinite network limit. In particular, power-law distributions are heavy tailed.

Scale-free networks :

In many natural and artificial networks, a sufficiently wide region of a degree distribution may be approximately fitted by a power law. These networks are called scale-free.

Preferential attachment :

In the preferential attachment process, vertices for connection/attachment are chosen preferentially – usually, with probability proportional to a given function of their degree. The preferential attachment mechanism effectively generates networks with complex architectures including networks with heavy‐tailed degree distribution.

Bibliography

Primary Literature

  1. Flory PJ (1941) Molecular size distribution in three‐dimensional polymers: I, II, III. J Am Chem Soc 63:83–100

    Google Scholar 

  2. Stockmayer WH (1943/1944) Theory of molecular size distribution and gel formation in branched chain polymers. J Chem Phys 11:45–55; 12:125–134

    Google Scholar 

  3. Na HS, Rapoport A (1970) Distribution of nodes of a tree by degree. Math Biosci 6:313–329

    Article  MathSciNet  MATH  Google Scholar 

  4. Moon JW (1974) The distance between nodes in recursive trees. Lond Math Soc Lect Notes Ser 13:125–132

    Google Scholar 

  5. Barabási A-L, Albert R (1999) Emergence of scaling in complex networks. Science 286:509–512

    Google Scholar 

  6. Mahmoud H (1991) Limiting distributions for path lengths in recursive trees. Probab Eng Info Sci 5:53–59

    Article  MATH  Google Scholar 

  7. Erdős P, Rényi A (1959) On random graphs. Publ Math Debr 6:290–297

    Google Scholar 

  8. Dobrow RP (1996) On the distribution of distances in recursive trees. J Appl Prob 33:749–757

    Article  MathSciNet  MATH  Google Scholar 

  9. Bialas P, Burda Z, Jurkiewicz J, Krzywicki A (2003) Tree networks with causal structure. Phys Rev E 67:066106

    Article  Google Scholar 

  10. Yule GU (1925) A mathematical theory of evolution based on the conclusions of Dr. JC Willis. Phil Trans Royal Soc Lond B 213:21–87

    Article  Google Scholar 

  11. Simon HA (1955) On a class of skew distribution functions. Biometrica 42:425–440

    MATH  Google Scholar 

  12. Price DJ de S (1976) A general theory of bibliometric and other cumulative advantage processes. J Amer Soc Inform Sci 27:292–306

    Article  Google Scholar 

  13. Albert R, Barabási A-L, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A 272:173–187

    Google Scholar 

  14. Szymański J (1987) On a nonuniform random recursive trees. Ann Discret Math 33:297–306

    Google Scholar 

  15. Dorogovtsev SN, Mendes JFF, Samukhin AN (2001) Size‐dependent degree distribution of a scale-free growing network. Phys Rev E 63:062101

    Article  Google Scholar 

  16. Pastor‐Satorras R, Vázquez A, Vespignani A (2001) Dynamical and correlation properties of the Internet. Phys Rev Lett 87:258701

    Google Scholar 

  17. Vázquez A, Pastor‐Satorras R, Vespignani A (2002) Large-scale topological and dynamical properties of the Internet. Phys Rev E 65:066130

    Google Scholar 

  18. Bollobás B, Riordan O (2003) Mathematical results on scale-free graphs. In: Bornholdt S, Schuster HG (eds) Handbook of Graphs and Networks. Wiley, Weinheim, pp 1–34

    Google Scholar 

  19. Klemm K, Eguíluz VM (2002) Growing networks with small-world behavior. Phys Rev E 65:057102

    Google Scholar 

  20. Bianconi G, Capocci A (2003) Number of loops of size h in growing scale-free networks. Phys Rev Lett 90:078701

    Article  Google Scholar 

  21. Bollobás B, Riordan OM (2004) The diameter of a scale-free random graph. Combinatorica 24:5–34

    Google Scholar 

  22. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Exact solution of the Barabási‐Albert model. Phys Rev Lett 85:4633–4636

    Article  Google Scholar 

  23. Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford

    MATH  Google Scholar 

  24. Krapivsky PL, Redner S (2001) Organization of growing random networks. Phys Rev E 63:066123

    Article  Google Scholar 

  25. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    Article  Google Scholar 

  26. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632

    Article  Google Scholar 

  27. Bauke H, Sherrington D (2007) Topological phase transition in complex networks. arXiv:0710.0831

  28. Ben-Naim E, Krapivsky PL (2007) Addition‐deletion networks. J Phys A 40:8607–8619

    Article  MathSciNet  MATH  Google Scholar 

  29. Krapivsky PL, Redner S (2002) Finiteness and fluctuations in growing networks. J Phys A 35:9517–9534

    Article  MathSciNet  MATH  Google Scholar 

  30. Waclaw B, Sokolov IM (2007) Finite size effects in Barabási–Albert growing networks. Phys Rev E 75:056114

    Article  MathSciNet  Google Scholar 

  31. Bianconi G, Barabási A-L (2001) Competition and multiscaling in evolving networks. Europhys Lett 54:436–442

    Google Scholar 

  32. Ergun G, Rodgers GJ (2002) Growing random networks with fitness. Phys A 303:261–272

    Article  Google Scholar 

  33. Dorogovtsev S, Mendes JFF (2000) Evolution of networks with aging of sites. Phys Rev E 62:1842–1845

    Article  Google Scholar 

  34. Bianconi G, Barabási A-L (2001) Bose–Einstein condensation in complex networks. Phys Rev Lett 86:5632–5635

    Google Scholar 

  35. Barrat A, Barthélemy M, Pastor‐Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci 101:3747–3752

    Google Scholar 

  36. Barrat A, Barthélemy M, Vespignani A (2004) Weighted evolving networks: Coupling topology and weights dynamics. Phys Rev Lett 92:228701

    Google Scholar 

  37. Dorogovtsev S, Mendes JFF (2005) Evolving weighted scale-free networks. AIP Conf Proc 776:29–36

    Article  MathSciNet  Google Scholar 

  38. Bianconi G (2005) Emergence of weight‐topology correlations in complex scale-free networks. Europhys Lett 71:1029–1035

    Article  Google Scholar 

  39. Callaway DS, Hopcroft JE, Kleinberg JM, Newman MEJ, Strogatz SH (2001) Are randomly grown graphs really random? Phys Rev E 64:041902

    Article  Google Scholar 

  40. Dorogovtsev SN, Mendes JFF, Samukhin AN (2001) Anomalous percolation properties of growing networks. Phys Rev E 64:066110

    Article  Google Scholar 

  41. Lancaster D (2002) Cluster growth in two growing network models. J Phys A 35:1179–1194

    Article  MathSciNet  MATH  Google Scholar 

  42. Kim J, Krapivsky PL, Kahng B, Redner S (2002) Infinite‐order percolation and giant fluctuations in a protein interaction network. Phys Rev E 66:055101

    Article  Google Scholar 

  43. Coulomb S, Bauer M (2003) Asymmetric evolving random networks. Eur Phys J B 35:377–389

    Article  Google Scholar 

  44. Krapivsky PL, Derrida B (2004) Universal properties of growing networks. Phys A 340:714–724

    Article  MathSciNet  Google Scholar 

  45. Szabó G, Alava M, Kertész J (2002) Shortest paths and load scaling in scale-free trees. Phys Rev E 66:026101

    Google Scholar 

  46. Bollobás B, Riordan OM (2004) Shortest paths and load scaling in scale-free trees. Phys Rev E 69:036114

    Google Scholar 

  47. Cohen R, Havlin S (2003) Scale-free networks are ultra-small. Phys Rev Lett 90:058701

    Article  Google Scholar 

  48. Dorogovtsev SN, Mendes JFF (2001) Effect of the accelerating growth of communications networks on their structure. Phys Rev E 63:025101(R)

    Google Scholar 

  49. Leskovec J, Kleinberg J, Faloutsos C (2007) Laws of graph evolution: Densification and shrinking diameters. ACM TKDD (1)2 physics/0603229

    Google Scholar 

  50. Willinger W, Govindan R, Jamin S, Paxson V, Shenker S (2002) Scaling phenomena in the Internet: Critically examining criticality. Proc Natl Acad Sci 99:2573–2580

    Article  Google Scholar 

  51. Ferrer I, Cancho R, Sole RV (2003) Optimization in complex networks. In: Pastor‐Satorras R, Rubi M, Diaz‐Guilera A (eds) Statistical Mechanics of Complex Networks. Springer, Berlin, pp 114–125; cond-mat/0111222

    Google Scholar 

  52. Fabrikant A, Koutsoupias E, Papadimitriou CH (2002) Heuristically optimized trade-offs: A new paradigm for power laws in the Internet. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, pp 110–122

    Google Scholar 

  53. Berger N, Bollobás B, Borgs C, Chayes J, Riordan O (2003) Degree distribution of the FKP network model. Lecture Notes in Computer Science, vol 2719. Springer, Berlin, pp 725–738

    Google Scholar 

  54. D'Souza RM, Borgs C, Chayes JT, Berger N, Kleinberg RD (2007) Emergence of tempered preferential attachment from optimization. Proc Natl Acad Sci 104:6112–6117

    Article  Google Scholar 

  55. Barabási A-L, Ravasz E, Vicsek T (2001) Deterministic scale-free networks. Phys A 299:559–564

    Google Scholar 

  56. Dorogovtsev SN, Goltsev AV, Mendes JFF (2002a) Pseudofractal scale-free web. Phys Rev E 65:066122

    Article  Google Scholar 

  57. Jung S, Kim S, Kahng B (2002) Geometric fractal growth model for scale-free networks. Phys Rev E 65:056101

    Article  Google Scholar 

  58. Andrade JS Jr., Herrmann HJ, Andrade RFS, da Silva LR (2005) Apollonian networks. Phys Rev Lett 94:018702

    Article  Google Scholar 

  59. Kim BJ, Trusina A, Minnhagen P, Sneppen K (2005) Self organized scale-free networks from merging and regeneration. Eur Phys J B 43:369–372

    Article  Google Scholar 

  60. Goh KI, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87:278701–278704

    Article  Google Scholar 

  61. Goh KI, Oh E, Jeong H, Kahng B, Kim D (2002) Classification of scale-free networks. Proc Natl Acad Sci 99:12583–12588

    Article  MathSciNet  MATH  Google Scholar 

  62. Kleinberg JM, Kumar R, and Raghavan P, Rajagopalan S, Tomkins AS (1999) The Web as a graph: Measurements, models and methods. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, pp 1–17

    Google Scholar 

  63. Colizza V, Flammini A, Maritan A, Vespignani A (2005) Characterization and modeling of protein‐protein interaction networks. Phys A 352:1–27

    Article  Google Scholar 

  64. Barabási A-L, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A 311:590–614

    Google Scholar 

  65. Ramasco JJ, Dorogovtsev SN, Pastor‐Satorras R (2004) Self‐organization of collaboration networks. Phys Rev E 70:036106

    Google Scholar 

Books and Reviews

  1. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Google Scholar 

  2. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: Structure and dynamics. Phys Rep 424:175–308

    Article  MathSciNet  Google Scholar 

  3. Caldarelli G (2007) Scale-Free Networks: Complex Webs in Nature and Technology. Oxford Finance Series. Oxford University Press, Oxford

    Google Scholar 

  4. Cohen R, Havlin S, Ben‐Avraham D (2003) Structural properties of scale free networks. In: Bornholdt S, Schuster HG (eds) Handbook of Graphs and Networks. Wiley, Weinheim, pp 85–110

    Google Scholar 

  5. Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187

    Article  Google Scholar 

  6. Dorogovtsev SN, Goltsev AV, Mendes JFF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(3) arXiv:0705.00100

    Google Scholar 

  7. Durrett R (2006) Random Graph Dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Kim J, Krapivsky PL, Kahng B, Redner S (2002) Infinite‐order percolation and giant fluctuations in a protein interaction network. Phys Rev E 66:055101

    Article  Google Scholar 

  9. Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256

    Article  MathSciNet  MATH  Google Scholar 

  10. Pastor‐Satorras R, Vespignani A (2004) Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge

    Google Scholar 

  11. Pastor‐Satorras R, Vazquez A, Vespignani A (2001) Dynamical and correlation properties of the Internet. Phys Rev Lett 87:258701–258704

    Google Scholar 

  12. Smythe RT, Mahmoud HM (1995) A survey of recursive trees. Theor Prob Math Statist 51:1–27

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks A. V. Goltsev, J. F. F. Mendes, and A. N. Samukhin for numerous discussions. This work waspartially supported by projects POCI: FAT/46241, MAT/46176, FIS/61665, and BIA-BCM/62662, and DYSONET.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Dorogovtsev, S.N. (2012). Growth Models for Networks. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_95

Download citation

Publish with us

Policies and ethics