Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Granular Computing, Philosophical Foundation for

  • Zhengxin Chen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_88

Article Outline

Glossary

Definition of the Subject

Introduction

The Road to Granular Computing

The Nature of Granule and Granule Computing

Granule Measurement

Granular Structure

Granulation Provides a Unified View for Intelligent Problem Solving

Relationship with Soft Computing and Natural Computing

Relationship with Fundamental Issues of Computing and Complex Systems Problem Solving

Summary

Future Directions

Acknowledgments

Bibliography

Keywords

Soft Computing Rule Mining Information Hiding Philosophical Foundation Neighborhood System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The author thanks Dr. T. Y. Lin's useful comments for the improvement of the paper.

Bibliography

Primary Literature

  1. 1.
    Bargiela A, Pedrycz W (2002) Granular computing as an emerging paradigm of information processing. In: Bargiela A, Perycz W (eds) Granular computing: An introduction. Kluwer, BostonGoogle Scholar
  2. 2.
    Bargiela A, Pedryez W (2006) The roots of granular computing. Proc IEEE Conf Granul Comput, pp 806–809Google Scholar
  3. 3.
    Bargiela A, Pedryez W (2008) Toward a theory of granular computing for human‐centered information processing. IEEE Trans FuzzySyst 16(2):320–330CrossRefGoogle Scholar
  4. 4.
    Bains S (2004) Physical computation and the design of anticipatory systems. Proc IEEE SMC 2004Google Scholar
  5. 5.
    Boyd R, Gasper P, Trout JD (1991) The philosophy of science. Blackwell Publishers, CambridgeGoogle Scholar
  6. 6.
    Burkhardt H, Dufour CA (1991) Part/Whole I: History. In: Burkhardt H, Smith B (eds) Handbook of metaphysics and ontology. Philosophia, MünchenGoogle Scholar
  7. 7.
    Chen Z (1999) An integrated architecture for OLAP and data mining. In: Bramer M (ed) Knowledge discovery and data mining: Theory and practice. IEE, London, Chap 6, pp 114–136Google Scholar
  8. 8.
    Chen Z (2002) The three dimensions of data mining foundation. In: Proc ICDM 2002 workshop on the foundation of data mining and discovery, Dec 2002, pp 119–124Google Scholar
  9. 9.
    Chen Z (2003) On Granular computing for aggregate data mining. In: 7th international conference on computer science and informatics, Proc JCIS, pp 431–434Google Scholar
  10. 10.
    Chen Z (2003) Discovering rules and answering queries at the right granulation levels. In: 7th international conference on computer science and informatics, Proc JCIS, pp 435–438Google Scholar
  11. 11.
    Chen Z (2003) Bioinformatics as a study of structured granules. In: International conference on computational intelligence and natural computing, Proc JCIS, pp 1629–1632Google Scholar
  12. 12.
    Chidlovskii B (2001) Schema extraction from XML data: A grammatical inference approach. In: KRDB'01 Workshop (knowledge representation and databases) Rome, Italy, 2001. http://citeseer.ist.psu.edu/chidlovskii01schema.html
  13. 13.
    Cucker F, Smale S (2002) On the mathematical foundations of learning. Bull Amer Math Soc 39:1–49MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    De Castro LN (2006) Fundamentals of natural computing: Basic concepts, algorithms, and applications. Chapman and Hall/CRC, Boca RatonMATHGoogle Scholar
  15. 15.
    Dick S, Schenker A, Pedrycz W, Kandel A (2007) Regranulation: A granular algorithm enabling communication between granular worlds. Inf Sci 177(2):408–435MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gan Q, Wang G, Hu J (2006) A self‐learning model based on granular computing. In: Proc 2006 Int Conf Granul Comput (IEEE GrC 2006), pp 530–533Google Scholar
  17. 17.
    Granular computing information center. http://www.cs.sjsu.edu/~grc/grcinfo_center/grcinfo_index.php
  18. 18.
    Han J, Kamper M (2006) Data mining: Concepts and techniques, 2nd edn. Morgan Kaufmann, San FranciscoMATHGoogle Scholar
  19. 19.
    He J (2002) Schema discovery of the semi‐structured and hierarchical data. In: Proc IDEAL (intelligent data engineering and automated learning) 2002. LNCS, vol 2412. Springer, Berlin, pp 129–134CrossRefGoogle Scholar
  20. 20.
    Hobbs JR (1985) Granularity. In: Proceedings of the 9th international joint conference on artificial intelligence, pp 432–435Google Scholar
  21. 21.
    HollandJH (1999) Emergence: From chaos to order. Addison-Wesley, ReadingGoogle Scholar
  22. 22.
    Jankowski A, Skowron A (2007) Toward rough‐granular computing. In: Rough sets, fuzzy sets, data mining and granular computing (Proc RSFDGrC 2007). LNCS, vol 4482. Springer, Berlin, pp 1–12CrossRefGoogle Scholar
  23. 23.
    Keet CM (2006) A taxonomy of types of granularity. In: Proc 2006 Int Conf Granul Comput (IEEE GrC 2006), pp 106–111Google Scholar
  24. 24.
    Lee TT (1987) An information‐theoretic analysis of relational databases – Part I: Data dependencies and information metric. IEEE Tran Softw Eng 13(10):1049–1061CrossRefGoogle Scholar
  25. 25.
    Libkin L (2007) Normalization theory for XML. In: Proc XSym 2007, pp 1–13Google Scholar
  26. 26.
    Lin TY (1998) Granular computing on binary relations I: Data mining and neighborhood systems. In: Skowron A, Polkowski L (eds) Rough sets in knowledge discovery. Physica, Heidelberg, pp 107–121Google Scholar
  27. 27.
    Lin TY (1998) Granular computing on binary relations II: Rough set representations and belief functions. In: Skowron A, Polkowski L (eds) Rough sets in knowledge discovery. Physica, Heidelberg, pp 121–140Google Scholar
  28. 28.
    Lin TY (2003) Granular computing: Structures, representations, and applications, rough sets, fuzzy sets, data mining, and granular computing. In: Proc RSFDGrC 2003. LNCS, vol 2639. Springer, Berlin, pp :16–24Google Scholar
  29. 29.
    Lin TY (2004) Mining associations by linear inequalities. ICDM 2004:154–161Google Scholar
  30. 30.
    Lin TY (2006) A roadmap from rough set theory to granular computing. LNAI, vol 4062, pp 33–41. Updated version: Granular computing on coverings: A roadmap from rough set theory to granular computingGoogle Scholar
  31. 31.
    Lin TY (2006) Granular computing II: Infrastructure for AI‐engineering. In: Proc 2006 Int Conf Granul Comput (IEEE GrC 2006), pp 2–7Google Scholar
  32. 32.
    LinTY (2003) Deductive data mining: Mathematical foundation of databasemining. LNCS, vol 2369, pp 403–404 Google Scholar
  33. 33.
    Lin TY, Zadeh LA (2004) Special issue on granular computing and data mining. Int J Intell Syst 19(7):565–566CrossRefGoogle Scholar
  34. 34.
    Pfeifer R, Bongard J (2007) How the body shapes the way we think: A new view of intelligence. MIT Press, CambridgeGoogle Scholar
  35. 35.
    Qiu T, Chen X, Huang H, Liu Q (2006) Ontology capture based on granular computing. In: Proc 6th Int Conf Intell Syst Design Appl (ISDA'06), pp 770–774Google Scholar
  36. 36.
    Silberschatz A, Korth H, Sudhashan S (2006) Database system concepts, 5th edn. McGraw‐Hill, BostonGoogle Scholar
  37. 37.
    Singh GB (2002) Discovering matrix attachment regions (MARs) in genomic databases. SIGKDD Explor 1(2):39–45CrossRefGoogle Scholar
  38. 38.
    Skowron A, Stepaniuk J (2001) Information granules: Towards foundations of granular computing. Int J Intell Syst 16:57–85MATHCrossRefGoogle Scholar
  39. 39.
    Sowa JF (1999) Knowledge representation: Logical, philosophical, and computational foundations. Brooks/Cole Publishing, PacificGroveGoogle Scholar
  40. 40.
    Yager RR (2006) Some learning paradigms for granular computing. In: Proc 2006 Int Conf Granul Comput (IEEE GrC 2006), pp 25–29Google Scholar
  41. 41.
    YaoJT (2007) A ten-year review of granular computing. GrC 2007:734–739Google Scholar
  42. 42.
    Zadeh LA (2006) Granular computing – The concept of generalized constraint‐based computation. RSCTC 2006 (LNCS, vol 4259), 12–14Google Scholar
  43. 43.
    Zadeh LA (1998) Some reflections on soft computing, granular computing and their roles in the conception, design and untilization ofinformation/intelligent systems. Soft Comput 2:23–25CrossRefGoogle Scholar
  44. 44.
    Zadeh LA (2007) Granular computing – Computing with uncertain, imprecise and partially true data. In: Proc 5th Int Sym Spat Data Qual (ISSDQ 2007). http://www.itc.nl/ISSDQ2007/Documents/keynote_Zadeh.pdf
  45. 45.
    Zadeh LA (2007) Granular computing and rough set theory. In: Kryszkiewicz M, Peters JF, Rybinski H, Skowron A (eds) Rough sets and intelligent systems paradigms. Proc RSEISP 07, pp 1–4Google Scholar
  46. 46.
    Zhang L, Zhang B (2003) The quotient space theory of problem solving. LNCS, vol 2639. Springer, Berlin, pp 11–15Google Scholar
  47. 47.
    Zhang X, Chen Z (2002) Algorithms for finding influential association rules. In: Proc 1st IEEE international conference on fuzzy systems and knowledge discovery, pp 499–503Google Scholar
  48. 48.
    Zhou G, Liang J (2006) Granular computing model based on ontology. IEEE Int Conf Granul Comput 321–324Google Scholar

Books and Reviews

  1. 49.
    Johnson S (2001) Emergence: The connected lives of ants, brains, cities, and software. Scribner, New YorkGoogle Scholar
  2. 50.
    Lin TY (1997) Granular computing. In: Announcement of the BISC special interest group on granular computing.Google Scholar
  3. 51.
    Minsky M (2006) The emotion machine: Commonsense thinking, artificial intelligence, and the future of human mind. Simon and Schuster. Online draft at Minsky's website http://web.media.mit.edu/~minsky/
  4. 52.
    Pawlak Z (1991) Rough sets: Theoretical aspects of reasoning about data. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  5. 53.
    Pawlak Z (1998) Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp 106–110Google Scholar
  6. 54.
    Wang Z, Leung K-S, Klir GJ (2008) Integration on finite sets. Int J Intell Syst 21:1073–1092CrossRefGoogle Scholar
  7. 55.
    Zadeh LA (1997) Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Set Syst 19:111–127MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zhengxin Chen
    • 1
  1. 1.Department of Computer ScienceUniversity of Nebraska at OmahaOmahaUSA