Skip to main content

Fuzzy Sets Theory, Foundations of

  • Reference work entry
Computational Complexity
  • 281 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Fuzzy Sets – Basic Definitions and Properties

Fuzzy Relations

Linguistic Variable, Fuzzy Conditional Statement, and Compositional Rule of Inference

The Extension Principle

Fuzzy Numbers

Fuzzy Events and Their Probabilities

Defuzzification of Fuzzy Sets

Fuzzy Logic – Basic Issues

Bellman and Zadeh's General Approach to Decision Making Under Fuzziness

Concluding Remarks

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Fuzzy set:

A mathematical tool that can formally characterize an imprecise concept. Whereas a conventional set to which elements can either belong or not, elements in a fuzzy set can belong to some extent, from zero, which stands for a full nonbelongingness) to one, which stands for a full belongingness, through all intermediate values.

Fuzzy relation:

A mathematical tool that can formally characterize that which is imprecisely specified, notably by using natural language, relations between variables, for instance, similar, much greater than, almost equal, etc.

Extension principle:

Makes it possible to extend relations, algorithms, etc. defined for variables that take on nonfuzzy (e. g. real) values to those that take on fuzzy values.

Linguistic variable, fuzzy conditional statement, com-positional rule of inference:

Make it possible to use variables, which take on linguistic (instead of numeric) values to represent relations between such variables, by using fuzzy conditional statements and use them in inference by using the compositional rule of inference.

Fuzzy event and its probability:

Make it possible to formally define events which are imprecisely specified, like “high temperature” and calculate their probabilities, for instance the probability of a “high temperature tomorrow”.

Fuzzy logic:

Provides formal means for the representation of, and inference based on imprecisely specified premises and rules of inference; can be understood in different ways, basically as fuzzy logic in a narrow sense, being some type of multivalued logic, and fuzzy logic in a broad sense, being a way to formalize inference based on imprecisely specified premises and rules of inference.

Bibliography

  1. Atanassov KT (1983) Intuitionistic fuzzy sets. VII ITKR session. CentralSci.-Techn. Library of Bulg. Acad. of Sci., Sofia pp 1697/84. (in Bulgarian)

    Google Scholar 

  2. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst20:87–96

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov KT (1999) Intuitionistic fuzzy sets: Theory andapplications. Springer, Heidelberg

    Book  MATH  Google Scholar 

  4. Bandemer H, Gottwald S (1995) Fuzzy sets, fuzzy logic, fuzzy methods, withapplications. Wiley, Chichester

    MATH  Google Scholar 

  5. Bandemer H, Näther W (1992) Fuzzy data analysis. Kluwer,Dordrecht

    Google Scholar 

  6. Bandler W, Kohout LJ (1980) Fuzzy power sets for fuzzy implicationoperators. Fuzzy Sets Syst 4:13–30

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellman RE, Giertz M (1973) On the analytic formalism of the theory of fuzzysets. Inform Sci 5:149–157

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci17:141–164

    Article  MathSciNet  Google Scholar 

  9. Belohlávek R, Vychodil V (2005) Fuzzy equational logic. Springer,Heidelberg

    Google Scholar 

  10. Bezdek JC (1981) Pattern recognition with fuzzy objective functionalgorithms. Plenum, New York

    Book  MATH  Google Scholar 

  11. Black M (1937) Vagueness: An exercise in logical analysis. Philos Sci4:427–455

    Article  Google Scholar 

  12. Black M (1963) Reasoning with loose concepts. Dialogue2:1–12

    Article  Google Scholar 

  13. Black M (1970) Margins of precision. Cornell University Press,Ithaca

    Google Scholar 

  14. Buckley JJ (2004) Fuzzy statistics. Springer,Heidelberg

    MATH  Google Scholar 

  15. Buckley JJ (2005) Fuzzy probabilities. New approach and applications, 2ndedn. Springer, Heidelberg

    MATH  Google Scholar 

  16. Buckley JJ (2005) Simulating fuzzy systems. Springer,Heidelberg

    MATH  Google Scholar 

  17. Buckley JJ (2006) Fuzzy probability and statistics. Springer,Heidelberg

    MATH  Google Scholar 

  18. Buckley JJ, Eslami E (2002) An introduction to fuzzy logic and fuzzysets. Springer, Heidelberg

    MATH  Google Scholar 

  19. Calvo T, Mayor G, Mesiar R (2002) Aggregation operators. New trends andapplications. Springer, Heidelerg

    Book  MATH  Google Scholar 

  20. Carlsson C, Fullér R (2002) Fuzzy reasoning in decision making andoptimization. Springer, Heidelberg

    Google Scholar 

  21. Castillo O, Melin P (2008) Type-2 fuzzy logic: Theory andapplications. Springer, Heidelberg

    MATH  Google Scholar 

  22. Cox E (1994) The fuzzy system handbook. A practitioner's guide tobuilding, using, and maintaining fuzzy systems. Academic, New York

    Google Scholar 

  23. Cross V, Sudkamp T (2002) Similarity and compatibility in fuzzy settheory. Assessment and applications. Springer, Heidelberg

    Google Scholar 

  24. Delgado M, Kacprzyk J, Verdegay JL, Vila MA (eds) (1994) Fuzzy optimization:Recent advances. Physica, Heidelberg

    MATH  Google Scholar 

  25. Dompere KK (2004) Cost‐benefit analysis and the theory of fuzzydecisions. Fuzzy value theory. Springer, Heidelberg

    MATH  Google Scholar 

  26. Dompere KK (2004) Cost‐benefit analysis and the theory of fuzzydecisions. Identification and measurement theory. Springer, Heidelberg

    MATH  Google Scholar 

  27. Driankov D, Hellendorn H, Reinfrank M (1993) An introduction to fuzzycontrol. Springer, Berlin

    Book  MATH  Google Scholar 

  28. Dubois D, Prade H (1980) Fuzzy sets and systems: Theory andapplications. Academic, New York

    MATH  Google Scholar 

  29. Dubois D, Prade H (1985) Théorie des possibilités. Applicationsa la représentation des connaissances en informatique. Masson, Paris

    MATH  Google Scholar 

  30. Dubois D, Prade H (1988) Possibility theory: An approach to computerizedprocessing of uncertainty. Plenum, New York

    Book  MATH  Google Scholar 

  31. Dubois D, Prade H (1996) Fuzzy sets and systems (Reedition on CR-ROMof [28]. Academic, New York

    Google Scholar 

  32. Fullér R (2000) Introduction to neuro-fuzzy systems. Springer,Heidelberg

    Google Scholar 

  33. Gaines BR (1977) Foundations of fuzzy reasoning. Int J Man-Mach Stud8:623–668

    Article  MathSciNet  Google Scholar 

  34. Gil Aluja J (2004) Fuzzy sets in the management of uncertainty. Springer,Heidelberg

    MATH  Google Scholar 

  35. Gil‐Lafuente AM (2005) Fuzzy logic in financial analysis. Springer,Heidelberg

    Google Scholar 

  36. Glöckner I (2006) Fuzzy quantifiers. A computationaltheory. Springer, Heidelberg

    Google Scholar 

  37. Goguen JA (1967) L‑fuzzy sets. J Math AnalAppl 18:145–174

    Article  MathSciNet  MATH  Google Scholar 

  38. Goguen JA (1969) The logic of inexact concepts. Synthese19:325–373

    Article  MATH  Google Scholar 

  39. Goodman IR, Nguyen HT (1985) Uncertainty models for knowledge‐basedsystems. North‐Holland, Amsterdam

    MATH  Google Scholar 

  40. Hájek P (1998) Metamathematics of fuzzy logic. Kluwer,Dordrecht

    Google Scholar 

  41. Hanss M (2005) Applied fuzzy arithmetic. An introduction with engineeringapplications. Springer, Heidelberg

    MATH  Google Scholar 

  42. Kacprzyk J (1983) Multistage decision making under fuzziness, Verlag TÜVRheinland, Cologne

    Google Scholar 

  43. Kacprzyk J (1992) Fuzzy sets and fuzzy logic. In: Shapiro SC (ed) Encyclopediaof artificial intelligence, vol 1. Wiley, New York, pp 537–542

    Google Scholar 

  44. Kacprzyk J (1996) Multistage fuzzy control. Wiley,Chichester

    Google Scholar 

  45. Kacprzyk J, Fedrizzi M (eds) (1988) Combining fuzzy imprecision withprobabilistic uncertainty in decision making. Springer, Berlin

    MATH  Google Scholar 

  46. Kacprzyk J, Orlovski SA (eds) (1987) Optimization models using fuzzy sets andpossibility theory. Reidel, Dordrecht

    MATH  Google Scholar 

  47. Kandel A (1986) Fuzzy mathematical techniques with applications. AddisonWesley, Reading

    MATH  Google Scholar 

  48. Kaufmann A, Gupta MM (1985) Introduction to fuzzy mathematics –theory and applications. Van Nostrand Reinhold, New York

    Google Scholar 

  49. Klement EP, Mesiar R, Pap E (2000) Triangular norms. Springer,Heidelberg

    Book  MATH  Google Scholar 

  50. Klir GJ (1987) Where do we stand on measures of uncertainty, ambiguity,fuzziness, and the like? Fuzzy Sets Syst 24:141–160

    Article  MathSciNet  MATH  Google Scholar 

  51. Klir GJ, Folger TA (1988) Fuzzy sets, uncertainty andinformation. Prentice‐Hall, Englewood Cliffs

    MATH  Google Scholar 

  52. Klir GJ, Wierman M (1999) Uncertainty‐based information. Elements ofgeneralized information theory, 2nd end. Springer, Heidelberg

    Google Scholar 

  53. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: Theory andapplication. Prentice‐Hall, Englewood Cliffs

    MATH  Google Scholar 

  54. Kosko B (1992) Neural networks and fuzzy systems. Prentice‐Hall,Englewood Cliffs

    MATH  Google Scholar 

  55. Kruse R, Meyer KD (1987) Statistics with vague data. Reidel,Dordrecht

    Book  MATH  Google Scholar 

  56. Kruse R, Gebhard J, Klawonn F (1994) Foundations of fuzzy systems. Wiley,Chichester

    Google Scholar 

  57. Kuncheva LI (2000) Fuzzy classifier design. Springer,Heidelberg

    Book  MATH  Google Scholar 

  58. Li Z (2006) Fuzzy chaotic systems modeling, control, andapplications. Springer, Heidelberg

    MATH  Google Scholar 

  59. Liu B (2007) Uncertainty theory. Springer,Heidelberg

    MATH  Google Scholar 

  60. Ma Z (2006) Fuzzy database modeling of imprecise and uncertain engineeringinformation. Springer, Heidelberg

    MATH  Google Scholar 

  61. Mamdani EH (1974) Application of fuzzy algorithms for the control ofa simple dynamic plant. Proc IEE 121:1585–1588

    Google Scholar 

  62. Mareš M (1994) Computation over fuzzy quantities. CRC, BocaRaton

    Google Scholar 

  63. Mendel J (2000) Uncertain rule-based fuzzy logic systems: Introduction and newdirections. Prentice Hall, New York

    Google Scholar 

  64. Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE Trans FuzzySyst 10(2):117–127

    Article  Google Scholar 

  65. Mordeson JN, Nair PS (2001) Fuzzy mathematics. An introduction for engineersand scientists, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

  66. Mukaidono M (2001) Fuzzy logic for beginners. World Scientific, Singapore

    Book  MATH  Google Scholar 

  67. Negoiţa CV, Ralescu DA (1975) Application of fuzzy sets to systemanalysis. Birkhäuser/Halstead, Basel/New York

    Google Scholar 

  68. Nguyen HT, Waler EA (205) A first course in fuzzy logic, 3rd end. CRC, BocaRaton

    Google Scholar 

  69. Nguyen HT, Wu B (2006) Fundamentals of statistics with fuzzy data. Springer,Heidelberg

    MATH  Google Scholar 

  70. Novák V (1989) Fuzzy sets and their applications. Hilger, Bristol,Boston

    Google Scholar 

  71. Novák V, Perfilieva I, Močkoř J (1999) Mathematical principlesof fuzzy logic. Kluwer, Boston

    Google Scholar 

  72. Peeva K, Kyosev Y (2005) Fuzzy relational calculus. World Scientific,Singapore

    Google Scholar 

  73. Pedrycz W (1993) Fuzzy control and fuzzy systems, 2nd edn. ResearchStudies/Wiley, Taunton/New York

    MATH  Google Scholar 

  74. Pedrycz W (1995) Fuzzy sets engineering. CRC, BocaRaton

    MATH  Google Scholar 

  75. Pedrycz W (ed) (1996) Fuzzy modelling: Paradigms and practice. Kluwer,Boston

    MATH  Google Scholar 

  76. Pedrycz W, Gomide F (1998) An introduction to fuzzy sets: Analysis anddesign. MIT Press, Cambridge

    MATH  Google Scholar 

  77. Petry FE (1996) Fuzzy databases. Principles and applications. Kluwer,Boston

    Book  MATH  Google Scholar 

  78. Piegat A (2001) Fuzzy modeling and control. Springer,Heidelberg

    Book  MATH  Google Scholar 

  79. Ruspini EH (1991) On the semantics of fuzzy logic. Int J Approx Reasining5:45–88

    Article  MathSciNet  MATH  Google Scholar 

  80. Rutkowska D (2002) Neuro-fuzzy architectures and hybrid learning. Springer,Heidelberg

    Book  MATH  Google Scholar 

  81. Rutkowski L (2004) Flexible neuro-fuzzy systems. Structures, learning andperformance evaluation. Kluwer, Dordrecht

    MATH  Google Scholar 

  82. Seising R (2007) The fuzzification of systems. The genesis of fuzzy set theoryand its initial applications – developments up to the 1970s. Springer, Heidelberg

    MATH  Google Scholar 

  83. Smithson M (1989) Ignorance and uncertainty. Springer,Berlin

    Book  Google Scholar 

  84. Sousa JMC, Kaymak U (2002) Fuzzy decision making in modelling andcontrol. World Scientific, Singapore

    Google Scholar 

  85. Thole U, Zimmermann H-J, Zysno P (1979) On the suitability of minimum andproduct operator for the intersection of fuzzy sets. Fuzzy Sets Syst 2:167–180

    Article  MATH  Google Scholar 

  86. Turkşen IB (1991) Measurement of membership functions and theiracquisition. Fuzzy Sets Syst 40:5–38

    Google Scholar 

  87. Türksen IB (2006) An ontlogical and epistemological perspective of fuzzyset theory. Elsevier, New York

    Google Scholar 

  88. Wang Z, Klir GJ (1992) Fuzzy measure theory. Kluwer,Boston

    Book  MATH  Google Scholar 

  89. Wygralak M (1996) Vaguely defined objects. Representations, fuzzy sets andnonclassical cardinality theory. Kluwer, Dordrecht

    MATH  Google Scholar 

  90. Wygralak M (2003) Cardinalities of fuzzy sets. Springer,Heidelberg

    Book  MATH  Google Scholar 

  91. Yager RR (1983) Quantifiers in the formulation of multiple objective decisionfunctions. Inf Sci 31:107–139

    Article  MathSciNet  MATH  Google Scholar 

  92. Yager RR, Filev DP (1994) Essentials of fuzzy modeling and control. Wiley, NewYork

    Google Scholar 

  93. Yager RR, Kacprzyk J (eds) (1996) The ordered weighted averaging operators:Theory, methodology and applications. Kluwer, Boston

    Google Scholar 

  94. Yazici A, George R (1999) Fuzzy database modeling. Springer,Heidelberg

    Book  MATH  Google Scholar 

  95. Zadeh LA (1965) Fuzzy sets. Inf Control8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  96. Zadeh LA (1968) Probability measures of fuzzy events. J Math Anal Appl23:421–427

    Article  MathSciNet  MATH  Google Scholar 

  97. Zadeh LA (1973) Outline of a new approach to the analysis of complex systemsand decision processes. IEEE Trans Syst, Man Cybern SMC-2:28–44

    Google Scholar 

  98. Zadeh LA (1975) Fuzzy logic and approximate reasoning. Synthese30:407–428

    Article  MATH  Google Scholar 

  99. Zadeh LA (1975) The concept of a linguistic variable and its application toapproximate reasoning. Inf Sci (Part I) 8:199–249, (Part II) 8:301–357, (Part III) 9:43–80

    Google Scholar 

  100. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. FuzzySets Syst 1:3–28

    Article  MathSciNet  MATH  Google Scholar 

  101. Zadeh LA (1983) A computational approach to fuzzy quantifiers in naturallanguages. Comput Math Appl 9:149–184

    Article  MathSciNet  MATH  Google Scholar 

  102. Zadeh LA (1985) Syllogistic reasoning in fuzzy logic and its application tousuality and reasoning with dispositions. IEEE Trans Syst Man Cybern SMC-15:754–763

    Article  MathSciNet  Google Scholar 

  103. Zadeh LA (1986) Fuzzy probabilities. Inf Process Manag20:363–372

    Article  Google Scholar 

  104. Zadeh LA, Kacprzyk J (eds) (1992) Fuzzy logic for the management ofuncertainty. Wiley, New York

    Google Scholar 

  105. Zadeh LA, Kacprzyk J (eds) (1999) Computing with words ininformation/intelligent systems. 1 Foundations. Springer, Heidelberg

    Google Scholar 

  106. Zadeh LA, Kacprzyk J (eds) (1999) Computing with words ininformation/intelligent systems. 2 Applications. Springer, Heidelberg

    Google Scholar 

  107. Zang H, Liu D (2006) Fuzzy modeling and fuzzy control. Birkhäuser, NewYork

    Google Scholar 

  108. Zimmermann H-J (1976) Description and optimization of fuzzy systems. Int JGen Syst 2:209–215

    Article  MATH  Google Scholar 

  109. Zimmermann H-J (1987) Fuzzy sets, decision making, and expertsystems. Kluwer, Dordrecht

    Book  Google Scholar 

  110. Zimmermann H-J (1996) Fuzzy set theory and its applications, 3rdedn. Kluwer, Boston

    Book  MATH  Google Scholar 

  111. Zimmermann H-J, Zysno P (1980) Latent connectives in human decisionmaking. Fuzzy Sets Syst 4:37–51

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Kacprzyk, J. (2012). Fuzzy Sets Theory, Foundations of. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_77

Download citation

Publish with us

Policies and ethics