Skip to main content

Fuzzy Logic

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

Conceptual Structure of Fuzzy Logic

The Basics of Fuzzy Set Theory

The Concept of Granulation

The Concepts of Precisiation and Cointensive Precisiation

The Concept of a Generalized Constraint

Principal Contributions of Fuzzy Logic

A Glimpse of What Lies Beyond Fuzzy Logic

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cointension:

A qualitative measure of proximity of meanings/input‐output relations.

Extension principle:

A principle which relates to propagation of generalized constraints.

f‑validity:

fuzzy validity.

Fuzzy if‑then rule:

A rule of the form: if X is A then Y is B. In general, A and B are fuzzy sets.

Fuzzy logic (FL):

A precise logic of imprecision, uncertainty and approximate reasoning.

Fuzzy logic gambit:

Exploitation of tolerance for imprecision through deliberatem‑imprecisiation followed by mm‐precisiation.

Fuzzy set:

A class with a fuzzy boundary.

Generalized constraint:

A constraint of the form X isr R, where X is the constrained variable, R is the constraining relation and r is an indexical variable which defines the modality of the constraint, that is, its semantics. In general, generalized constraints have elasticity.

Generalized constraint language:

A language generated by combination and propagation of generalized constraints.

Graduation:

Association of a scale of degrees with a fuzzy set.

Granuland:

Result of granulation.

Granular variable:

A variable which takes granules as variables.

Granulation:

Partitioning of an object/set into granules.

Granule:

A clump of attribute values drawn together by indistinguishability, equivalence, similarity, proximity or functionality.

Linguistic variable:

A granular variable with linguistic labels of granular values.

m‑precision:

Precision of meaning.

mh‐precisiand:

m‑precisiand which is described in a natural language (human‐oriented).

mm‐precisiand:

m‑precisiand which is described in a mathematical language (machine‐oriented).

p‑validity:

provable validity.

Precisiand:

Result of precisiation.

Precisiend:

Object of precisiation.

v‑precision:

Precision of value.

Bibliography

Primary Literature

  1. Aliev RA, Fazlollahi B, Aliev RR, Guirimov BG (2006) Fuzzy time seriesprediction method based on fuzzy recurrent neural network. In: Neuronal Informatinformation Processing Book. Lecture notes in computerscience, vol 4233. Springer, Berlin, pp 860–869

    Google Scholar 

  2. Bargiela A, Pedrycz W (2002) Granular computing: AnIntroduction. Kluwer Academic Publishers, Boston

    Google Scholar 

  3. Bardossy A, Duckstein L (1995) Fuzzy rule-based modelling with application togeophysical, biological and engineering systems. CRC Press, New York

    Google Scholar 

  4. Bellman RE, Zadeh LA (1970) Decision‐making in a fuzzyenvironment. Manag Sci B 17:141–164

    MathSciNet  Google Scholar 

  5. Belohlavek R, Vychodil V (2006) Attribute implications in a fuzzysetting. In: Ganter B, Kwuida L (eds) ICFCA (2006) Lecture notes in artificial intelligence, vol 3874. Springer, Heidelberg, pp45–60

    Google Scholar 

  6. Bezdek J, Pal S (eds) (1992) Fuzzy models for pattern recognition –methods that search for structures in data. IEEE Press, New York

    Google Scholar 

  7. Bezdek J, Keller JM, Krishnapuram R, Pal NR (1999) Fuzzy models and algorithmsfor pattern recognition and image processing. In: Zimmermann H(ed) Kluwer, Dordrecht

    Google Scholar 

  8. Bouchon‐Meunier B, Yager RR, Zadeh LA (eds) (2000) Uncertainty inintelligent and information systems. In: Advances in fuzzy systems – applications and theory, vol 20. World Scientific,Singapore

    Google Scholar 

  9. Colubi A, Santos Domínguez-Menchero J, López-Díaz M, Ralescu DA (2001)On the formalization of fuzzy random variables. Inf Sci 133(1–2):3–6

    Google Scholar 

  10. Cresswell MJ (1973) Logic and Languages. Methuen,London

    Google Scholar 

  11. Dempster AP (1967) Upper and lower probabilities induced by a multivaluedmapping. Ann Math Stat 38:325–329

    Article  MathSciNet  MATH  Google Scholar 

  12. Driankov D, Hellendoorn H, Reinfrank M (1993) An Introduction to FuzzyControl. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Dubois D, Prade H (1980) Fuzzy Sets and Systems – Theory andApplications. Academic Press, New York

    MATH  Google Scholar 

  14. Dubois D, Prade H (1982) A class of fuzzy measures based on triangularnorms. Int J General Syst 8:43–61

    Article  MathSciNet  MATH  Google Scholar 

  15. Dubois D, Prade H (1988) Possibility Theory. Plenum Press, NewYork

    Book  MATH  Google Scholar 

  16. Dubois D, Prade H (1994) Non‐standard theories of uncertainty inknowledge representation and reasoning. KnowlEngineer Rev Camb J Online 9(4):pp 399–416

    Google Scholar 

  17. Esteva F, Godo L (2007) Towards the generalization of Mundici's gamma functorto IMTL algebras: the linearly ordered case, Algebraic and proof‐theoretic aspects of non‐classical logics, pp 127–137

    Google Scholar 

  18. Filev D, Yager RR (1994) Essentials of Fuzzy Modeling andControl. Wiley‐Interscience, New York

    Google Scholar 

  19. Gasimov RN, Yenilmez K (2002) Solving fuzzy linear programming problems withlinear membership functions. Turk J Math 26:375–396

    MathSciNet  MATH  Google Scholar 

  20. Gerla G (2001) Fuzzy control as a fuzzy deduction system. Fuzzy Sets Syst121(3):409–425

    Article  MathSciNet  MATH  Google Scholar 

  21. Gerla G (2005) Fuzzy logic programming and fuzzy control. Studia Logica79(2):231–254

    Article  MathSciNet  MATH  Google Scholar 

  22. Godo LL, Esteva F, García P, Agustí J (1991) A formalsemantical approach to fuzzy logic. In: International Symposium on Multiple Valued Logic, ISMVL'91, pp 72–79

    Google Scholar 

  23. Goguen JA (1967) L-fuzzy sets. J Math Anal Appl18:145–157

    Article  MathSciNet  MATH  Google Scholar 

  24. Goodman IR, Nguyen HT (1985) Uncertainty models for knowledge‐basedsystems. North Holland, Amsterdam

    MATH  Google Scholar 

  25. Hajek P (1998) Metamathematics of fuzzy logic. Kluwer,Dordrecht

    Book  MATH  Google Scholar 

  26. Hirota K, Sugeno M (eds) (1995) Industrial applications of fuzzy technology inthe world. In: Advances in fuzzy systems – applications and theory, vol 2. World Scientific, Singapore

    Google Scholar 

  27. HöppnerF, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis. Wiley,Chichester

    Google Scholar 

  28. Jamshidi M, Titli A, Zadeh LA, Boverie S (eds) (1997) Applications of fuzzylogic – towards high machine intelligence quotient systems. In: Environmental and intelligent manufacturing systems series, vol 9. PrenticeHall, Upper Saddle River

    Google Scholar 

  29. Jankowski A, Skowron A (2007) Toward rough‐granular computing. In:Proceedings of the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, (RSFDGrC'07), Toronto, Canada,pp 1–12

    Google Scholar 

  30. Kacprzyk J, Zadeh LA (eds) (1999) Computing with words ininformation/intelligent systems part 1. Foundations. Physica, Heidelberg, New York

    Google Scholar 

  31. Kacprzyk J, Zadeh LA (eds) (1999) Computing with words ininformation/intelligent systems part 2. Applications. Physica, Heidelberg, New York

    Google Scholar 

  32. Kandel A, Langholz G (eds) (1994) Fuzzy control systems. CRC Press, BocaRaton

    MATH  Google Scholar 

  33. Klir GJ (2006) Uncertainty and information: Foundations of generalizedinformation theory. Wiley‐Interscience, Hoboken

    Google Scholar 

  34. Kóczy LT (1992) Fuzzy graphs in the evaluation and optimization ofnetworks. Fuzzy Sets Syst 46(3):307–319

    Google Scholar 

  35. Lambert K, Van Fraassen BC (1970) Meaning relations, possible objects andpossible worlds. Philosophical problems in logic, pp 1–19

    Google Scholar 

  36. Lawry J, Shanahan JG, Ralescu AL (eds) (2003) Modelling withwords – learning, fusion, and reasoning withina formal linguistic representation framework. Springer, Heidelberg

    Google Scholar 

  37. Lin TY (1997) Granular computing: From rough sets and neighborhood systems toinformation granulation and computing in words. In: European Congress on Intelligent Techniques and Soft Computing, September 8–12,pp 1602–1606

    Google Scholar 

  38. Liu Y, Luo M (1997) Fuzzy topology. In: Advances in fuzzy systems –applications and theory, vol 9. World Scientific, Singapore

    Google Scholar 

  39. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis witha fuzzy logic controller. Int J Man‐Machine Stud 7:1–13

    Article  MATH  Google Scholar 

  40. Mendel J (2001) Uncertain rule-based fuzzy logic systems –Introduction and new directions. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  41. Mordeson JN, Nair PS (2000) Fuzzy graphs and fuzzy hypergraphs. In: Studies inFuzziness and Soft Computing. Springer, Heidelberg

    Google Scholar 

  42. Mukaidono M, Shen Z, Ding L (1989) Fundamentals of fuzzy prolog. Int J ApproxReas 3(2):179–193

    Article  MATH  Google Scholar 

  43. Nguyen HT (1993) On modeling of linguistic information using random sets. In:Fuzzy sets for intelligent systems. Morgan Kaufmann Publishers, San Mateo, pp 242–246

    Google Scholar 

  44. Novak V (2006) Which logic is the real fuzzy logic? Fuzzy Sets Syst157:635–641

    Article  MATH  Google Scholar 

  45. Novak V, Perfilieva I, Mockor J (1999) Mathematical principles of fuzzylogic. Kluwer, Boston/Dordrecht

    Book  MATH  Google Scholar 

  46. Ogura Y, Li S, Kreinovich V (2002) Limit theorems and applications ofset‐valued and fuzzy set‐valued random variables. Springer, Dordrecht

    Google Scholar 

  47. Orlov AI (1980) Problems of optimization and fuzzy variables. Znaniye,Moscow

    Google Scholar 

  48. Pedrycz W, Gomide F (2007) Fuzzy systems engineering: Towardhuman‐centric computing. Wiley, Hoboken

    Book  Google Scholar 

  49. Perfilieva I (2007) Fuzzy transforms: a challenge to conventionaltransforms. In: Hawkes PW (ed) Advances in images and electron physics, 147. Elsevier Academic Press, San Diego,pp 137–196

    Chapter  Google Scholar 

  50. Puri ML, Ralescu DA (1993) Fuzzy random variables. In: Fuzzy sets forintelligent systems. Morgan Kaufmann Publishers, San Mateo, pp 265–271

    Google Scholar 

  51. Ralescu DA (1995) Cardinality, quantifiers and the aggregation of fuzzycriteria. Fuzzy Sets Syst 69:355–365

    Article  MathSciNet  MATH  Google Scholar 

  52. Ross TJ (2004) Fuzzy logic with engineering applications, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  53. RossiF, Codognet P (2003) Special Issue on Soft Constraints: Constraints 8(1)

    Google Scholar 

  54. Rutkowska D (2002) Neuro-fuzzy architectures and hybrid learning. In: Studiesin fuzziness and soft computing. Springer

    Google Scholar 

  55. RutkowskiL (2008) Computational intelligence. Springer, Polish ScientificPublishers PWN, Warzaw

    Google Scholar 

  56. SchumD (1994) Evidential foundations of probabilistic reasoning. Wiley, NewYork

    Google Scholar 

  57. Shafer G (1976) A mathematical theory of evidence. Princeton University Press,Princeton

    MATH  Google Scholar 

  58. Trillas E (2006) On the use of words and fuzzy sets. Inf Sci176(11):1463–1487

    Article  MathSciNet  MATH  Google Scholar 

  59. Türksen IB (2007) Meta‐linguistic axioms as a foundation forcomputing with words. Inf Sci 177(2):332–359

    Google Scholar 

  60. Wang PZ, Sanchez E (1982) Treating a fuzzy subset as a projectablerandom set. In: Gupta MM, Sanchez E (eds) Fuzzy information and decision processes. North Holland, Amsterdam,pp 213–220

    Google Scholar 

  61. WangP (2001) Computing with words. Albus J, Meystel A, Zadeh LA (eds)Wiley, New York

    Google Scholar 

  62. WangZ, Klir GJ (1992) Fuzzy measure theory. Springer, New York

    Book  MATH  Google Scholar 

  63. Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman& Hall, London

    MATH  Google Scholar 

  64. Wygralak M (2003) Cardinalities of fuzzy sets. In: Studies in fuzziness andsoft computing. Springer, Berlin

    Google Scholar 

  65. Yager RR, Zadeh LA (eds) (1992) An introduction to fuzzy logic applications inintelligent systems. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  66. Yen J, Langari R, Zadeh LA (ed) (1995) Industrial applications of fuzzy logicand intelligent systems. IEEE, New York

    MATH  Google Scholar 

  67. Yen J, Langari R (1998) Fuzzy logic: Intelligence, control and information,1st edn. Prentice Hall, New York

    Google Scholar 

  68. Ying M (1991) A new approach for fuzzy topology (I). Fuzzy Sets Syst39(3):303–321

    Article  MATH  Google Scholar 

  69. Ying H (2000) Fuzzy control and modeling – analytical foundationsand applications. IEEE Press, New York

    Google Scholar 

  70. Zadeh LA (1965) Fuzzy sets. Inf Control8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  71. Zadeh LA (1972) A fuzzy-set‐theoretic interpretation of linguistichedges. J Cybern 2:4–34

    Article  MathSciNet  Google Scholar 

  72. Zadeh LA (1972) A rationale for fuzzy control. J Dyn Syst Meas Control G94:3–4

    Article  Google Scholar 

  73. Zadeh LA (1973) Outline of a new approach to the analysis of complexsystems and decision processes. IEEE Trans Syst Man Cybern SMC 3:28–44

    Article  MathSciNet  MATH  Google Scholar 

  74. Zadeh LA (1974) On the analysis of large scale systems. In: Gottinger H (ed)Systems approaches and environment problems. Vandenhoeck and Ruprecht, Göttingen, pp 23–37

    Google Scholar 

  75. Zadeh LA (1975) The concept of a linguistic variable and its applicationto approximate reasoning Part I. Inf Sci 8:199–249; Part II. Inf Sci 8:301–357; Part III. Inf Sci 9:43–80

    Article  MathSciNet  MATH  Google Scholar 

  76. Zadeh LA (1975) Calculus of fuzzy restrictions. In: Zadeh LA, Fu KS, Tanaka K,Shimura M (eds) Fuzzy sets and their applications to cognitive and decision processes. Academic Press, New York,pp 1–39

    Google Scholar 

  77. Zadeh LA (1975) Fuzzy logic and approximate reasoning. Synthese30:407–428

    Article  MATH  Google Scholar 

  78. Zadeh LA (1976) A fuzzy‐algorithmic approach to the definition ofcomplex or imprecise concepts. Int J Man‐Machine Stud 8:249–291

    Article  MathSciNet  MATH  Google Scholar 

  79. Zadeh LA (1978) Fuzzy sets as a basis for a theory ofpossibility. Fuzzy Sets Syst 1:3–28

    Article  MathSciNet  MATH  Google Scholar 

  80. Zadeh LA (1978) PRUF – a meaning representation language fornatural languages. Int J Man‐Machine Stud 10:395–460

    Article  MathSciNet  MATH  Google Scholar 

  81. Zadeh LA (1979) Fuzzy sets and information granularity. In: Gupta M, Ragade R,Yager R (eds) Advances in fuzzy set theory and applications. North‐Holland Publishing Co., Amsterdam,pp 3–18

    Google Scholar 

  82. Zadeh LA (1979) A theory of approximate reasoning. In: Hayes J,Michie D, Mikulich LI (eds) Machine intelligence 9. Halstead Press, New York, pp 149–194

    Google Scholar 

  83. Zadeh LA (1981) Possibility theory and soft data analysis. In: Cobb L, ThrallRM (eds) Mathematical frontiers of the social and policy sciences. Westview Press, Boulder, pp 69–129

    Google Scholar 

  84. Zadeh LA (1982) Test-score semantics for natural languages and meaningrepresentation via PRUF. In: Rieger B (ed) Empirical semantics. Brockmeyer, Bochum, pp 281–349

    Google Scholar 

  85. Zadeh LA (1983) Test-score semantics as a basis for a computationalapproach to the representation of meaning. Proceedings of theTenth Annual Conference of the Association for Literary and LinguisticComputing, Oxford University Press

    Google Scholar 

  86. Zadeh LA (1983) A computational approach to fuzzy quantifiers in naturallanguages. Comput Math 9:149–184

    MathSciNet  MATH  Google Scholar 

  87. Zadeh LA (1984) Precisiation of meaning via translation into PRUF. In: VainaL, Hintikka J (eds) Cognitive constraints on communication. Reidel, Dordrecht, pp 373–402

    Chapter  Google Scholar 

  88. Zadeh LA (1986) Test-score semantics as a basis for a computationalapproach to the representation of meaning. Lit Linguist Comput 1:24–35

    Article  Google Scholar 

  89. Zadeh LA (1986) Outline of a computational approach to meaning andknowledge representation based on the concept of a generalized assignment statement. In: Thoma M, Wyner A (eds) Proceedings of the InternationalSeminar on Artificial Intelligence and Man‐Machine Systems. Springer, Heidelberg, pp 198–211

    Chapter  Google Scholar 

  90. Zadeh LA (1996) Fuzzy logic and the calculi of fuzzy rules and fuzzy graphs.Multiple‐Valued Logic 1:1–38

    MathSciNet  MATH  Google Scholar 

  91. Zadeh LA (1997) Toward a theory of fuzzy information granulation and itscentrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90:111–127

    Article  MathSciNet  MATH  Google Scholar 

  92. Zadeh LA (1998) Some reflections on soft computing, granular computing andtheir roles in the conception, design and utilization of information/intelligent systems. Soft Comput 2:23–25

    Article  Google Scholar 

  93. Zadeh LA (1999) From computing with numbers to computing withwords – from manipulation of measurements to manipulation of perceptions. IEEE Trans Circuits Syst45:105–119

    MathSciNet  Google Scholar 

  94. Zadeh LA (2000) Outline of a computational theory of perceptions based oncomputing with words. In: Sinha NK, Gupta MM, Zadeh LA (eds) Soft Computing & Intelligent Systems: Theory and Applications. Academic Press,London, pp 3–22

    Chapter  Google Scholar 

  95. Zadeh LA (2001) A new direction in AI – towarda computational theory of perceptions. AI Magazine 22(1):73–84

    Google Scholar 

  96. Zadeh LA (2002) Toward a perception‐based theory of probabilisticreasoning with imprecise probabilities. J Stat Plan Inference 105:233–264

    Article  MathSciNet  MATH  Google Scholar 

  97. Zadeh LA (2004) Precisiated natural language (PNL). AI Magazine25(3)74–91

    Google Scholar 

  98. Zadeh LA (2005) Toward a generalized theory of uncertainty(GTU) – an outline. Inf Sci 172:1–40

    Article  MathSciNet  MATH  Google Scholar 

  99. Zadeh LA (2005) From imprecise to granular probabilities. Fuzzy Sets Syst154:370–374

    Article  MathSciNet  MATH  Google Scholar 

  100. Zadeh LA (2006) From search engines to question answeringsystems – The problems of world knowledge, relevance, deduction and precisiation. In: Sanchez E (ed) Fuzzy logic and the semantic web, Chapt9. Elsevier, pp 163–210

    Google Scholar 

  101. Zadeh LA (2006) Generalized theory of uncertainty (GTU)–principalconcepts and ideas. Comput Stat Data Anal 51:15–46

    Google Scholar 

  102. Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci178:(13)2751–2779

    Article  MathSciNet  MATH  Google Scholar 

  103. Zimmermann HJ (1978) Fuzzy programming and linear programming with severalobjective functions. Fuzzy Sets Syst 1:45–55

    Article  MATH  Google Scholar 

Books and Reviews

  1. Aliev RA, Fazlollahi B, Aliev RR (2004) Soft computing and its applications in business and economics. In: Studies in fuzziness and soft computing. Springer, Berlin

    Google Scholar 

  2. Dubois D, Prade H (eds) (1996) Fuzzy information engineering: A guided tour of applications. Wiley, New York

    Google Scholar 

  3. Gupta MM, Sanchez E (1982) Fuzzy information and decision processes. North‐Holland, Amsterdam

    MATH  Google Scholar 

  4. Hanss M (2005) Applied fuzzy arithmetic: An introduction with engineering applications. Springer, Berlin

    MATH  Google Scholar 

  5. Hirota K, Czogala E (1986) Probabilistic sets: Fuzzy and stochastic approach to decision, control and recognition processes, ISR. Verlag TUV Rheinland, Köln

    Google Scholar 

  6. Jamshidi M, Titli A, Zadeh LA, Boverie S (1997) Applications of fuzzy logic: Towards high machine intelligence quotient systems. In: Environmental and intelligent manufacturing systems series. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Kacprzyk J, Fedrizzi M (1992) Fuzzy regression analysis. In: Studies in fuzziness. Physica 29

    Google Scholar 

  8. Kosko B (1997) Fuzzy engineering. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  9. Mastorakis NE (1999) Computational intelligence and applications. World Scientific Engineering Society

    Google Scholar 

  10. Pal SK, Polkowski L, Skowron (2004) A rough‐neural computing: Techniques for computing with words. Springer, Berlin

    Google Scholar 

  11. Ralescu AL (1994) Applied research in fuzzy technology, international series in intelligent technologies. Kluwer Academic Publishers, Boston

    Google Scholar 

  12. Reghis M, Roventa E (1998) Classical and fuzzy concepts in mathematical logic and applications. CRC-Press, Boca Raton

    MATH  Google Scholar 

  13. Schneider M, Kandel A, Langholz G, Chew G (1996) Fuzzy expert system tools. Wiley, New York

    Google Scholar 

  14. Türksen IB (2005) Ontological and epistemological perspective of fuzzy set theory. Elsevier Science and Technology Books

    Google Scholar 

  15. Zadeh LA, Kacprzyk J (1992) Fuzzy logic for the management of uncertainty. Wiley

    Google Scholar 

  16. Zhong N, Skowron A, Ohsuga S (1999) New directions in rough sets, data mining, and granular‐soft computing. In: Lecture Notesin Artificial Intelligence. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Zadeh, L.A. (2012). Fuzzy Logic . In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_73

Download citation

Publish with us

Policies and ethics