Skip to main content

Food Webs

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction: Food Web Concepts and Data

Early Food Web Structure Research

Food Web Properties

Food Webs Compared to Other Networks

Models of Food Web Structure

Structural Robustness of Food Webs

Food Web Dynamics

Ecological Networks

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Connectance(C):

The proportion of possible links in a food web that actually occur. There are many algorithms for calculating connectance. The simplest and most widely used algorithm, sometimes referred to as “directed connectance,” is links per species2 \( { (L/S^{2}) } \), where S 2 represents all possible directed feeding interactions among S species, and L is the total number of actual feeding links. Connectance ranges from ∼ 0.03 to 0.3 in food webs, with a mean of ∼ 0.10 to 0.15.

Consumer-resource interactions:

A generic way of referring to a wide variety of feeding interactions, such as predator‐prey, herbivore‐plant or parasite‐host interactions. Similarly, “consumer” refers generically to anything that consumes or preys on something else, and “resource” refers to anything that is consumed or preyed upon. Many taxa are both consumers and resources within a particular food web.

Food web:

The network of feeding interactions among diverse co‐occurring species in a particular habitat.

Trophic species (S):

Defined within the context of a particular food web, a trophic species is comprised of a set of taxa that share the same set of consumers and resources. A particular trophic species is represented by a single node in the network, and that node is topologically distinct from all other nodes. “Trophic species” is a convention introduced to minimize bias due to uneven resolution in food web data and to focus analysis and modeling on functionally distinct network components. S is used to denote the number of trophic species in a food web. The terms “trophic species,” “species,” and “taxa” will be used somewhat interchangeably throughout this article to refer to nodes in a food web. “Original species” will be used specifically to denote the taxa found in the original dataset, prior to trophic species aggregation.

Bibliography

Primary Literature

  1. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Google Scholar 

  2. Albert R, Barabási AL (2002) Statistical mechanics of complex networks.Rev Mod Phys 74:47–97

    Google Scholar 

  3. Allesina S, Bodini A (2004) Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. J Theor Biol 230:351–358

    MathSciNet  Google Scholar 

  4. Amaral LAN, Scala A, Berthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Nat Acad Sci USA 97:11149–11152

    Google Scholar 

  5. Arii K, Parrott L (2004) Emergence of non‐random structure in local food webs generated from randomly structured regional webs. J Theor Biol 227:327–333

    MathSciNet  Google Scholar 

  6. Baird D, Ulanowicz RE (1989) The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol Monogr 59:329–364

    Google Scholar 

  7. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant‐animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Google Scholar 

  8. Bascompte J, Melián CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci 102:5443–5447

    Google Scholar 

  9. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Google Scholar 

  10. Beckerman AP, Petchey OL, Warren PH (2006) Foraging biology predicts food web complexity. Proc Natl Acad Sci USA 103:13745–13749

    Google Scholar 

  11. Bersier L-F, Banašek-Richter C, Cattin M-F (2002) Quantitative descriptors of food web matrices. Ecology 83:2394–2407

    Google Scholar 

  12. Briand F, Cohen JE (1984) Community food webs have scale‐invariant structure. Nature 398:330–334

    Google Scholar 

  13. Brose U, Williams RJ, Martinez ND (2003) Comment on “Foraging adaptation and the relationship between food-web complexity and stability”. Science 301:918b

    Google Scholar 

  14. Brose U, Williams RJ, Martinez ND (2006) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236

    Google Scholar 

  15. Camacho J, Arenas A (2005) Universal scaling in food-web structure? Nature 435:E3-E4

    Google Scholar 

  16. Camacho J, Guimerà R, Amaral LAN (2002) Robust patterns in food web structure. Phys Rev Lett 88:228102

    Google Scholar 

  17. Camacho J, Guimerà R, Amaral LAN (2002) Analytical solution of a model for complex food webs. Phys Rev Lett E 65:030901

    Google Scholar 

  18. Cartoza CC, Garlaschelli D, Caldarelli G (2006) Graph theory and food webs. In: Pascual M, Dunne JA (eds) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York, pp 93–117

    Google Scholar 

  19. Cattin M-F, Bersier L-F, Banašek-Richter C, Baltensperger M, Gabriel J-P (2004) Phylogenetic constraints and adaptation explain food-web structure. Nature 427:835–839

    Google Scholar 

  20. Chen X, Cohen JE (2001) Global stability, local stability and permanence in model food webs. J Th Biol 212:223–235

    Google Scholar 

  21. Chen X, Cohen JE (2001) Transient dynamics and food web complexity in the Lotka–Volterra cascade model. Proc Roy Soc Lond B 268:869–877

    Google Scholar 

  22. Christian RR, Luczkovich JJ (1999) Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol Model 117:99–124

    Google Scholar 

  23. Cohen JE (1977) Ratio of prey to predators in community food webs. Nature 270:165–167

    Google Scholar 

  24. Cohen JE (1977) Food webs and the dimensionality of trophic niche space. Proc Natl Acad Sci USA 74:4533–4563

    Google Scholar 

  25. Cohen JE (1978) Food Webs and Niche Space. Princeton University Press, NJ

    Google Scholar 

  26. Cohen JE (1989) Ecologists Co‐operative Web Bank (ECOWeB™). Version 1.0. Machine Readable Data Base of Food Webs. Rockefeller University, NY

    Google Scholar 

  27. Cohen JE, Briand F (1984) Trophic links of community food webs. Proc Natl Acad Sci USA 81:4105–4109

    MATH  Google Scholar 

  28. Cohen JE, Newman CM (1985) A stochastic theory of community food webs: I.Models and aggregated data. Proc R Soc Lond B 224:421–448

    Google Scholar 

  29. Cohen JE, Palka ZJ (1990) A stochastic theory of community food webs: V.Intervality and triangulation in the trophic niche overlap graph. Am Nat 135:435–463

    Google Scholar 

  30. Cohen JE, Briand F, Newman CM (1986) A stochastic theory of community food webs: III. Predicted and observed length of food chains. Proc R Soc Lond B 228:317–353

    Google Scholar 

  31. Cohen JE, Briand F, Newman CM (1990) Community Food Webs: Data and Theory. Springer, Berlin

    MATH  Google Scholar 

  32. Cohen JE, Luczak T, Newman CM, Zhou Z-M (1990) Stochastic structure and non-linear dynamics of food webs: qualitative stability in a Lotka–Volterra cascade model. Proc R Soc Lond B 240:607–627

    Google Scholar 

  33. Cohen JE, Jonsson T, Carpenter SR (2003) Ecological community description using the food web, species abundance, and body size. Proc Natl Acad Sci USA 100:1781–1786

    Google Scholar 

  34. Daily GC (ed) (1997) Nature's services: Societal dependence on natural ecosystems. Island Press, Washington DC

    Google Scholar 

  35. Doyle J, Csete M (2007) Rules of engagement. Nature 446:860

    Google Scholar 

  36. Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York, pp 27–86

    Google Scholar 

  37. Dunne JA, Williams RJ, Martinez ND (2002) Food web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922

    Google Scholar 

  38. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Google Scholar 

  39. Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302

    Google Scholar 

  40. Dunne JA, Brose U, Williams RJ, Martinez ND (2005) Modeling food-web dynamics: complexity‐stability implications. In: Belgrano A, Scharler U, Dunne JA, Ulanowicz RE (eds) Aquatic Food Webs: An Ecosystem Approach. Oxford University Press, New York, pp 117–129

    Google Scholar 

  41. Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwing DE (2008) Compilation and network analyses of Cambrian food webs. PLoS Biology 5:e102. doi:10.1371/journal.pbio.0060102

    Google Scholar 

  42. Egerton FN (2007) Understanding food chains and food webs, 1700–1970. Bull Ecol Soc Am 88(1):50–69

    Google Scholar 

  43. Elton CS (1927) Animal Ecology. Sidgwick and Jackson, London

    Google Scholar 

  44. Elton CS (1958) Ecology of Invasions by Animals and Plants. Chapman & Hall, London

    Google Scholar 

  45. Garlaschelli D, Caldarelli G, Pietronero L (2003) Universal scaling relations in food webs. Nature 423:165–168

    Google Scholar 

  46. Goldwasser L, Roughgarden JA (1993) Construction of a large Caribbean food web. Ecology 74:1216–1233

    Google Scholar 

  47. Green JL, Hastings A, Arzberger P, Ayala F, Cottingham KL, Cuddington K, Davis F, Dunne JA, Fortin M-J, Gerber L, Neubert M (2005) Complexity in ecology and conservation: mathematical, statistical, and computational challenges. Bioscience 55:501–510

    Google Scholar 

  48. Hardy AC (1924) The herring in relation to its animate environment. Part 1. The food and feeding habits of the herring with special reference to the East Coast of England. Fish Investig Ser II 7:1–53

    Google Scholar 

  49. Havens K (1992) Scale and structure in natural food webs. Science 257:1107–1109

    Google Scholar 

  50. Hutchinson GE (1959) Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat 93:145–159

    Google Scholar 

  51. Huxham M, Beany S, Raffaelli D (1996) Do parasites reduce the chances of triangulation in a real food web? Oikos 76:284–300

    Google Scholar 

  52. Jeong H, Tombor B, Albert R, Oltvia ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Google Scholar 

  53. Jeong H, Mason SP, Barabási A-L, Oltavia ZN (2001) Lethality and centrality in protein networks. Nature 411:41

    Google Scholar 

  54. Jordán F, Molnár I (1999) Reliable flows and preferred patterns in food webs. Ecol Ecol Res 1:591–609

    Google Scholar 

  55. Jordán F, Scheuring I (2004) Network ecology: topological constraints on ecosystem dynamics. Phys Life Rev 1:139–229

    Google Scholar 

  56. Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Google Scholar 

  57. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in co‐evolutionary networks of plant‐animal interactions. Ecol Lett 6:69–81

    Google Scholar 

  58. Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391

    Google Scholar 

  59. Lafferty KD, Dobson AP, Kurls AM (2006) Parasites dominate food web links. Proc Nat Acad Sci USA 103:11211–11216

    Google Scholar 

  60. Lindeman RL (1942) The trophic‐dynamic aspect of ecology. Ecology 23:399–418

    Google Scholar 

  61. Link J (2002) Does food web theory work for marine ecosystems? Mar Ecol Prog Ser 230:1–9

    Google Scholar 

  62. MacArthur RH (1955) Fluctuation of animal populations and a measure of community stability. Ecology 36:533–536

    Google Scholar 

  63. Martinez ND (1991) Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecol Monogr 61:367–392

    Google Scholar 

  64. Martinez ND (1992) Constant connectance in community food webs. Am Nat 139:1208–1218

    Google Scholar 

  65. Martinez ND (1993) Effect of scale on food web structure. Science 260:242–243

    Google Scholar 

  66. Martinez ND (1994) Scale‐dependent constraints on food-web structure. Am Nat 144:935–953

    Google Scholar 

  67. Martinez ND, Hawkins BA, Dawah HA, Feifarek BP (1999) Effects of sampling effort on characterization of food-web structure. Ecology 80:1044–1055

    Google Scholar 

  68. Martinez ND, Williams RJ, Dunne JA (2006) Diversity, complexity, and persistence in large model ecosystems. In: Pascual M, Dunne JA (eds) Ecological Networks: Linking Structure to Dynamics in Food Webs.Oxford University Press, New York, pp 163–185

    Google Scholar 

  69. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Google Scholar 

  70. May RM (1973) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton. Reprinted in 2001 as a “Princeton Landmarks in Biology” edition

    Google Scholar 

  71. McCann KS (2000) The diversity‐stability debate. Nature 405:228–233

    Google Scholar 

  72. McKane AJ, Drossel B (2006) Models of food-web evolution. In: Pascual M, Dunne JA (eds) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York, pp 223–243

    Google Scholar 

  73. Memmott J (1999) The structure of a plant‐pollinator network. Ecol Lett 2:276–280

    Google Scholar 

  74. Memmott J, Martinez ND, Cohen JE (2000) Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J Anim Ecol 69:1–15

    Google Scholar 

  75. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc Royal Soc Lond Series B 271:2605–2611

    Google Scholar 

  76. Memmott J, Alonso D, Berlow EL, Dobson A, Dunne JA, Sole R, Weitz J (2006) Biodiversity loss and ecological network structure. In: Pascual M, Dunne JA (eds) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York, pp 325–347

    Google Scholar 

  77. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:763–764

    Google Scholar 

  78. Montoya JM, Solé RV (2002) Small world patterns in food webs. J Theor Biol 214:405–412

    Google Scholar 

  79. Montoya JM, Solé RV (2003) Topological properties of food webs: from real data to community assembly models. Oikos 102:614–622

    Google Scholar 

  80. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Collin Johnson N, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Google Scholar 

  81. Neutel AM, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Google Scholar 

  82. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    Google Scholar 

  83. Newman M, Barabasi A-L, Watts DJ (eds) (2006) The Structure and Dynamics of Networks. Princeton University Press, Princeton

    MATH  Google Scholar 

  84. Odum E (1953) Fundamentals of Ecology. Saunders, Philadelphia

    Google Scholar 

  85. Pascual M, Dunne JA (eds) (2006) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press, New York

    MATH  Google Scholar 

  86. Paine RT (1988) Food webs: road maps of interactions or grist for theoretical development? Ecology 69:1648–1654

    Google Scholar 

  87. Pierce WD, Cushamn RA, Hood CE (1912) The insect enemies of the cotton boll weevil. US Dept Agric Bull 100:9–99

    Google Scholar 

  88. Pimm SL (1982) Food Webs. Chapman and Hall, London. Reprinted in 2002 as a 2nd edition by University of Chicago Press

    Google Scholar 

  89. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Google Scholar 

  90. Pimm SL, Lawton JH (1978) On feeding on more than one trophic level. Nature 275:542–544

    Google Scholar 

  91. Pimm SL, Lawton JH (1980) Are food webs divided into compartments? J Anim Ecol 49:879–898

    Google Scholar 

  92. Polis GA (1991) Complex desert food webs: an empirical critique of food web theory. Am Nat 138:123–155

    Google Scholar 

  93. Schoener TW (1989) Food webs from the small to the large. Ecology 70:1559–1589

    Google Scholar 

  94. Schoenly K, Beaver R, Heumier T (1991) On the trophic relations of insects: a food web approach. Am Nat 137:597–638

    Google Scholar 

  95. Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proc R Soc Lond B 268:2039–2045

    Google Scholar 

  96. Solow AR (1996) On the goodness of fit of the cascade model. Ecology 77:1294–1297

    Google Scholar 

  97. Solow AR, Beet AR (1998) On lumping species in food webs. Ecology 79:2013–2018

    Google Scholar 

  98. Srinivasan UT, Dunne JA, Harte H, Martinez ND (2007) Response of complex food webs to realistic extinction sequences. Ecology 88:671–682

    Google Scholar 

  99. Stouffer DB, Camacho J, Guimera R, Ng CA, Amaral LAN (2005) Quantitative patterns in the structure of model and empirical food webs. Ecology 86:1301–1311

    Google Scholar 

  100. Stouffer DB, Camacho J, Amaral LAN (2006) A robust measure of food web intervality. Proc Nat Acad Sci 103:19015–19020

    Google Scholar 

  101. Strogatz SH (2001) Exploring complex networks. Nature 410:268–275

    Google Scholar 

  102. Sugihara G, Schoenly K, Trombla A (1989) Scale invariance in food web properties. Science 245:48–52

    Google Scholar 

  103. Summerhayes VS, Elton CS (1923) Contributions to the ecology of Spitzbergen and Bear Island. J Ecol 11:214–286

    Google Scholar 

  104. Summerhayes VS, Elton CS (1928) Further contributions to the ecology of Spitzbergen and Bear Island. J Ecol 16:193–268

    Google Scholar 

  105. Thompson RM, Townsend CR (1999) The effect of seasonal variation on the community structure and food-web attributes of two streams: implications for food-web science. Oikos 87:75–88

    Google Scholar 

  106. Thompson RM, Townsend CR (2005) Food web topology varies with spatial scale in a patchy environment. Ecology 86:1916–1925

    Google Scholar 

  107. Vásquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant‐pollinator interactions. Ecology 85:1251–1257

    Google Scholar 

  108. Warren PH (1989) Spatial and temporal variation in the structure of a freshwater food web. Oikos 55:299–311

    Google Scholar 

  109. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small‐world’ networks.Nature 393:440–442

    Google Scholar 

  110. Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Google Scholar 

  111. Williams RJ, Martinez ND (2004) Trophic levels in complex food webs: theory and data. Am Nat 163:458–468

    Google Scholar 

  112. Williams RJ, Martinez ND (2004) Diversity, complexity, and persistence in large model ecosystems. Santa Fe Institute Working Paper 04-07-022

    Google Scholar 

  113. Williams RJ, Berlow EL, Dunne JA, Barabási AL, Martinez ND (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci USA 99:12913–12916

    Google Scholar 

  114. Worm B, Sandow M, Oschlies A, Lotze HK, Myers RA (2005) Global patterns of predator diversity in the open oceans. Science 309:1365–1369

    Google Scholar 

  115. Yodzis P (1980) The connectance of real ecosystems. Nature 284:544–545

    Google Scholar 

  116. Yodzis P (1984) The structure of assembled communities II. J Theor Biol 107:115–126

    Google Scholar 

  117. Yodzis P (1998) Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. J Anim Ecol 67:635–658

    Google Scholar 

  118. Yodzis P (2000) Diffuse effects in food webs. Ecology 81:261–266

    Google Scholar 

  119. Yodzis P, Innes S (1992) Body-size and consumer‐resource dynamics. Am Nat 139:1151–1173.

    Google Scholar 

Books and Reviews

  1. Belgrano A, Scharler U, Dunne JA, Ulanowicz RE (eds) (2005) Aquatic Food Webs: An Ecosystem Approach. Oxford University Press, Oxford

    Google Scholar 

  2. Berlow EL, Neutel A-M, Cohen JE, De Ruiter P, Ebenman B, Emmerson M, Fox JW, Jansen VAA, Jones JI, Kokkoris GD, Logofet DO, McKane AJ, Montoya J, Petchey OL (2004) Interaction strengths in food webs: issues and opportunities. J Animal Ecol 73:585–598

    Google Scholar 

  3. Borer ET, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) Topological approaches to food web analyses: a few modifications may improve our insights. Oikos 99:397–401

    Google Scholar 

  4. Christensen V, Pauly D (1993) Trophic Models of Aquatic Ecosystems. ICLARM, Manila

    Google Scholar 

  5. Cohen JE, Beaver RA, Cousins SH, De Angelis DL, et al (1993) Improving food webs. Ecology 74:252–258

    Google Scholar 

  6. Cohen JE, Briand F, Newman CM (1990) Community Food Webs: Data and Theory. Springer, Berlin

    MATH  Google Scholar 

  7. DeAngelis DL, Post WM, Sugihara G (eds) (1983) Current Trends in Food Web Theory. ORNL-5983, Oak Ridge Natl Laboratory

    Google Scholar 

  8. Drossel B, McKane AJ (2003) Modelling food webs. In: Bornholt S, Schuster HG (eds) Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Berlin

    Google Scholar 

  9. Hall SJ, Raffaelli DG (1993) Food webs: theory and reality. Advances in Ecological Research 24:187–239

    Google Scholar 

  10. Lawton JH (1989) Food webs. In Cherett JM, (ed) Ecological Concepts. Blackwell Scientific, Oxford

    Google Scholar 

  11. Lawton JH, Warren PH (1988) Static and dynamic explanations for patterns in food webs. Trends in Ecology and Evolution 3:242–245

    Google Scholar 

  12. Martinez ND (1995) Unifying ecological subdisciplines with ecosystem food webs. In Jones CG, Lawton JH, (eds) Linking Species and Ecosystems. Chapman and Hall, New York

    Google Scholar 

  13. Martinez ND, Dunne JA (1998) Time, space, and beyond: scale issues in food-web research. In Peterson D, Parker VT, (eds) Ecological Scale: Theory and Applications. Columbia University Press, New York

    Google Scholar 

  14. May RM (1983) The structure of food webs. Nature 301:566–568

    Google Scholar 

  15. May RM (2006) Network structure and the biology of populations. Trends Ecol Evol 21:394–399

    Google Scholar 

  16. Montoya JM, Pimm SL, Sole RV (2006) Ecological networks and their fragility.Nature 442:259–264

    Google Scholar 

  17. Moore J, de Ruiter P, Wolters V (eds) (2005) Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development and Environmental Change. Academic Press, Elsevier, Amsterdam

    Google Scholar 

  18. Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350:669–674

    Google Scholar 

  19. Polis GA, Winemiller KO, (eds) (1996) Food Webs: Integration of Patterns & Dynamics. Chapman and Hall

    Google Scholar 

  20. Polis GA, Power ME, Huxel GR, (eds) (2003) Food Webs at the Landscape Level.University of Chicago Press

    Google Scholar 

  21. Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17:269–277

    Google Scholar 

  22. Strong DR (ed) (1988) Food web theory: a ladder for picking strawberries.Special Feature. Ecology 69:1647–1676

    Google Scholar 

  23. Warren PH (1994) Making connections in food webs. Trends Ecol Evol 9:136–141

    Google Scholar 

  24. Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Dunne, J.A. (2012). Food Webs. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_72

Download citation

Publish with us

Policies and ethics