Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Embodied and Situated Agents, Adaptive Behavior in

  • Stefano Nolfi
Reference work entry

Article Outline


Definition of the Subject


Embodiment and Situatedness

Behavior and Cognition as Complex Adaptive Systems

Adaptive Methods

Evolutionary Robotics Methods

Discussion and Conclusion



Cognitive Skill Complex Adaptive System Control Rule Behavioral Skill Light Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Asada M, MacDorman K, Ishiguro H, Kuniyoshi Y (2001) Cognitive developmentalrobotics as a new paradigm for the design of humanoid robots. Robot Auton Syst 37:185–193MATHCrossRefGoogle Scholar
  2. 2.
    Baldassarre G, Parisi D, Nolfi S (2006) Distributed coordination of simulatedrobots based on self‐organisation. Artif Life 3(12):289–311CrossRefGoogle Scholar
  3. 3.
    Beer RD (1995) A dynamical systems perspective on agent‐environmentinteraction. Artif Intell 72:173–215CrossRefGoogle Scholar
  4. 4.
    Beer RD (2003) The dynamics of active categorical perception in an evolved model agent. Adapt Behav 11:209–243CrossRefGoogle Scholar
  5. 5.
    Berthouze L, Lungarella M (2004) Motor skill acquisition under environmentalperturbations: on the necessity of alternate freezing and freeing. Adapt Behav 12(1):47–63CrossRefGoogle Scholar
  6. 6.
    Bongard JC, Paul C (2001) Making evolution an offer it can't refuse: Morphologyand the extradimensional bypass. In: Keleman J, Sosik P (eds) Proceedings of the Sixth European Conference on Artificial Life. Lecture Notes in ArtificialIntelligence, vol 2159. Springer, BerlinGoogle Scholar
  7. 7.
    Breazeal C (2003) Towards sociable robots. Robotics Auton Syst42(3–4):167–175MATHCrossRefGoogle Scholar
  8. 8.
    Brooks RA (1991) Intelligence without reason. In: Mylopoulos J, Reiter R (eds)Proceedings of 12th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San MateoGoogle Scholar
  9. 9.
    Brooks RA (1991) Intelligence without reason. In: Proceedings of 12thInternational Joint Conference on Artificial Intelligence. Sydney, Australia, pp 569–595Google Scholar
  10. 10.
    Brooks RA, Breazeal C, Irie R, Kemp C, Marjanovic M, Scassellati B, Williamson M(1998) Alternate essences of intelligence. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin,pp 961–976Google Scholar
  11. 11.
    Chiel HJ, Beer RD (1997) The brain has a body: Adaptive behavior emergesfrom interactions of nervous system, body and environment. Trends Neurosci 20:553–557CrossRefGoogle Scholar
  12. 12.
    Clark A (1997) Being there: Putting brain, body and world togetheragain. MIT Press, CambridgeGoogle Scholar
  13. 13.
    Endo I, Yamasaki F, Maeno T, Kitano H (2002) A method forco‐evolving morphology and walking patterns of bipedhumanoid robot. In: Proceedings of the IEEE Conference on Robotics andAutomation, Washington, D.C.Google Scholar
  14. 14.
    Floreano D, Husband P, Nolfi S (2008) Evolutionary Robotics. In: SicilianoB, Oussama Khatib (eds) Handbook of Robotics. Springer, BerlinGoogle Scholar
  15. 15.
    Gigliotta O, Nolfi S (2008) On the coupling between agent internal and agent/environmental dynamics: Development of spatial representations in evolvingautonomous robots. Adapt Behav 16:148–165CrossRefGoogle Scholar
  16. 16.
    Goldenberg E, Garcowski J, Beer RD (2004) May we have your attention: Analysisof a selective attention task. In: Schaal S, Ijspeert A, Billard A, Vijayakumar S, Hallam J, Meyer J-A (eds) From Animals to Animats 8: Proceedingsof the Eighth International Conference on the Simulation of Adaptive Behavior. MIT Press, CambridgeGoogle Scholar
  17. 17.
    Harvey I (2000) Robotics: Philosophy of mind using a screwdriver. In:Gomi T (ed) Evolutionary Robotics: From Intelligent Robots to Artificial Life, vol III. AAI Books, OntarioGoogle Scholar
  18. 18.
    Holland J (1975) Adaptation in natural and artificial systems. University ofMichigan Press, Ann ArborGoogle Scholar
  19. 19.
    Keijzer F (2001) Representation and behavior. MIT Press,LondonGoogle Scholar
  20. 20.
    Kelso JAS (1995) Dynamics patterns: The self‐organization of brain andbehaviour. MIT Press, CambridgeGoogle Scholar
  21. 21.
    Lungarella M, Metta G, Pfeifer R, Sandini G (2003) Developmental robotics:a survey. Connect Sci 15:151–190CrossRefGoogle Scholar
  22. 22.
    Marocco D, Nolfi S (2007) Emergence of communication in embodied agentsevolved for the ability to solve a collective navigation problem. Connect Sci 19(1):53–74CrossRefGoogle Scholar
  23. 23.
    Massera G, Cangelosi A, Nolfi S (2007) Evolution of prehension ability in ananthropomorphic neurorobotic arm. Front Neurorobot 1(4):1–9Google Scholar
  24. 24.
    McGeer T (1990) Passive walking with knees. In: Proceedings of the IEEEConference on Robotics and Automation, vol 2, pp 1640–1645Google Scholar
  25. 25.
    Metta G, Sandini G, Natale L, Panerai F (2001) Development and Q30robotics. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp 33–42Google Scholar
  26. 26.
    Mondada F, Franzi E, Ienne P (1993) Mobile robot miniaturisation: A toolfor investigation in control algorithms. In: Proceedings of the Third International Symposium on Experimental Robotics, Kyoto,JapanGoogle Scholar
  27. 27.
    Mondada F, Pettinaro G, Guigrard A, Kwee I, Floreano D, Denebourg J-L, NolfiS, Gambardella LM, Dorigo M (2004) Swarm-bot: A new distributed robotic concept. Auton Robots17(2–3):193–221CrossRefGoogle Scholar
  28. 28.
    Nolfi S (2002) Power and limits of reactive agents. Neurocomputing49:119–145CrossRefGoogle Scholar
  29. 29.
    Nolfi S (2005) Behaviour as a complex adaptive system: On the role ofself‐organization in the development of individual and collective behaviour. Complexus 2(3–4):195–203Google Scholar
  30. 30.
    Nolfi S, Floreano D (1999) Learning and Evolution. Auton Robots1:89–113CrossRefGoogle Scholar
  31. 31.
    Nolfi S, Floreano D (2000) Evolutionary Robotics: The Biology, Intelligence,and Technology of Self‐Organizing Machines. MIT Press/Bradford Books, CambridgeGoogle Scholar
  32. 32.
    Nolfi S, Marocco D (2002) Active perception: A sensorimotor account ofobject categorization. In: Hallam B, Floreano D, Hallam J, Hayes G, Meyer J-A (eds) From Animals to Animats 7, Proceedings of the VII InternationalConference on Simulation of Adaptive Behavior. MIT Press, Cambridge, pp 266–271Google Scholar
  33. 33.
    Oudeyer P-Y, Kaplan F, Hafner V (2007) Intrinsic motivation systems forautonomous mental development. IEEE Trans Evol Comput 11(2):265–286CrossRefGoogle Scholar
  34. 34.
    Pfeifer R, Bongard J (2007) How the body shape the way we think. MIT Press,CambridgeGoogle Scholar
  35. 35.
    Pfeifer R, Iida F, Gómez G (2006) Morphological computation for adaptivebehavior and cognition. In: International Congress Series, vol 1291, pp 22–29Google Scholar
  36. 36.
    Pollack JB, Lipson H, Funes P, Hornby G (2001) Three generations ofcoevolutionary robotics. Artif Life 7:215–223CrossRefGoogle Scholar
  37. 37.
    Prokopenko M, Gerasimov V, Tanev I (2006) Evolving spatiotemporal coordinationin a modular robotic system. In: Rocha LM, Yaeger LS, Bedau MA, Floreano D, Goldstone RL, Vespignani A (eds) Artificial Life X: Proceedings of theTenth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, BostonGoogle Scholar
  38. 38.
    Scassellati B (2001) Foundations for a Theory of Mind for a HumanoidRobot. Ph D thesis, Department of Electrical Engineering and Computer Science, MIT, BostonGoogle Scholar
  39. 39.
    Scheier C, Pfeifer R, Kunyioshi Y (1998) Embedded neural networks: exploitingconstraints. Neural Netw 11:1551–1596CrossRefGoogle Scholar
  40. 40.
    Schmitz A, Gómez G, Iida F, Pfeifer R (2007) On the robustness of simple speedcontrol for a quadruped robot. In: Proceeding of theInternational Conference on Morphological Computation, Venice, ItalyGoogle Scholar
  41. 41.
    Slocum AC, Downey DC, Beer RD (2000) Further experiments in the evolution ofminimally cognitive behavior: From perceiving affordances to selective attention. In: Meyer J, Berthoz A, Floreano D, Roitblat H, Wilson S (eds) FromAnimals to Animats 6. Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior. MIT Press,CambridgeGoogle Scholar
  42. 42.
    Schmidhuber J (2006) Developmental robotics, optimal artificial curiosity,creativity, music, and the fine arts. Connect Sci 18(2):173–187CrossRefGoogle Scholar
  43. 43.
    Steels L (2003) Evolving grounded communication for robots. Trends Cogn Sci7(7):308–312CrossRefGoogle Scholar
  44. 44.
    Sugita Y, Tani J (2005) Learning semantic combinatoriality from theinteraction between linguistic and behavioral processes. AdaptBehav 13(1):33–52CrossRefGoogle Scholar
  45. 45.
    Tani J, Fukumura N (1997) Self‐organizing internal representation inlearning of navigation: A physical experiment by the mobile robot Yamabico. Neural Netw 10(1):153–159CrossRefGoogle Scholar
  46. 46.
    Tani J, Nolfi S (1999) Learning to perceive the world as articulated: Anapproach for hierarchical learning in sensory‐motor systems. Neural Netw 12:1131–1141CrossRefGoogle Scholar
  47. 47.
    Tani J, Nishimoto R, Namikawa J, Ito M (2008) Co‐developmental learningbetween human and humanoid robot using a dynamic neural network model. IEEE Trans Syst Man Cybern B. Cybern 38:1Google Scholar
  48. 48.
    Varela FJ, Thompson E, Rosch E (1991) The Embodied mind: Cognitive science andhuman experience. MIT Press, CambridgeGoogle Scholar
  49. 49.
    van Gelder TJ (1998) The dynamical hypothesis in cognitive science. BehavBrain Sci 21:615–628Google Scholar
  50. 50.
    Vaughan E, Di Paolo EA, Harvey I (2004) The evolution of control andadaptation in a 3D powered passive dynamic walker. In: Pollack J, Bedau M, Husband P, Ikegami T, Watson R (eds) Proceedings of the NinthInternational Conference on the Simulation and Synthesis of Living Systems. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stefano Nolfi
    • 1
  1. 1.Institute of Cognitive Sciences and TechnologiesNational Research Council (CNR)RomeItaly